Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk-Aware Real-Time Task Allocation for Stochastic Multi-Agent Systems under STL Specifications (2404.02111v2)

Published 2 Apr 2024 in eess.SY and cs.SY

Abstract: This paper addresses the control synthesis of heterogeneous stochastic linear multi-agent systems with real-time allocation of signal temporal logic (STL) specifications. Based on previous work, we decompose specifications into sub-specifications on the individual agent level. To leverage the efficiency of task allocation, a heuristic filter evaluates potential task allocation based on STL robustness, and subsequently, an auctioning algorithm determines the definitive allocation of specifications. Finally, a control strategy is synthesized for each agent-specification pair using tube-based model predictive control (MPC), ensuring provable probabilistic satisfaction. We demonstrate the efficacy of the proposed methods using a multi-shuttle scenario that highlights a promising extension to automated driving applications like vehicle routing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia, “Model predictive control with signal temporal logic specifications,” in 53rd IEEE Conference on Decision and Control.   IEEE, 2014, pp. 81–87.
  2. D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion planning from signal temporal logic specifications,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3451–3458, 2022.
  3. S. Liu, A. Saoud, P. Jagtap, D. V. Dimarogonas, and M. Zamani, “Compositional synthesis of signal temporal logic tasks via assume-guarantee contracts,” in 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, pp. 2184–2189.
  4. L. Lindemann and D. V. Dimarogonas, “Barrier function based collaborative control of multiple robots under signal temporal logic tasks,” IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp. 1916–1928, 2020.
  5. T. Yang, Y. Zou, S. Li, and Y. Yang, “Distributed model predictive control for probabilistic signal temporal logic specifications,” IEEE Transactions on Automation Science and Engineering, pp. 1–11, 2023.
  6. M. H. W. Engelaar, Z. Zhang, M. Lazar, and S. Haesaert, “Risk-aware mpc for stochastic systems with runtime temporal logics,” arXiv preprint arXiv:2402.03165, 2024.
  7. E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task allocation problems with temporal and ordering constraints,” Robotics and Autonomous Systems, vol. 90, pp. 55–70, 2017.
  8. H. Liu, P. Zhang, B. Hu, and P. Moore, “A novel approach to task assignment in a cooperative multi-agent design system,” Applied Intelligence, vol. 43, pp. 162–175, 2015.
  9. D. P. Bertsekas, “Auction algorithms for network flow problems: A tutorial introduction,” Computational optimization and applications, vol. 1, pp. 7–66, 1992.
  10. A. Zhu and S. X. Yang, “A neural network approach to dynamic task assignment of multirobots,” IEEE transactions on neural networks, vol. 17, no. 5, pp. 1278–1287, 2006.
  11. G. Bruno and D. Antonelli, “Dynamic task classification and assignment for the management of human-robot collaborative teams in workcells,” The International Journal of Advanced Manufacturing Technology, vol. 98, pp. 2415–2427, 2018.
  12. M. Charitidou and D. V. Dimarogonas, “Signal temporal logic task decomposition via convex optimization,” IEEE Control Systems Letters, vol. 6, pp. 1238–1243, 2021.
  13. K. Leahy, A. Jones, and C.-I. Vasile, “Fast decomposition of temporal logic specifications for heterogeneous teams,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2297–2304, 2022.
  14. Z. Zhang and S. Haesaert, “Modularized control synthesis for complex signal temporal logic specifications,” in 2023 62nd IEEE Conference on Decision and Control (CDC).   IEEE, 2023, pp. 7856–7861.
  15. S. S. Farahani, R. Majumdar, V. S. Prabhu, and S. Soudjani, “Shrinking horizon model predictive control with signal temporal logic constraints under stochastic disturbances,” IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3324–3331, 2019.
  16. K. A. Mustafa, O. de Groot, X. Wang, J. Kober, and J. Alonso-Mora, “Probabilistic risk assessment for chance-constrained collision avoidance in uncertain dynamic environments,” arXiv preprint arXiv:2302.10846, 2023.
  17. M. Engelaar, S. Haesaert, and M. Lazar, “Stochastic model predictive control with dynamic chance constraints,” in 27th International Conference on System Theory, Control and Computing, 2023, pp. 356–361.
  18. A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-valued signals,” in International Conference on Formal Modeling and Analysis of Timed Systems.   Springer, 2010, pp. 92–106.
  19. S. Dharmadhikari and K. Jogdeo, “Multivariate unimodality,” The Annals of Statistics, pp. 607–613, 1976.
  20. S. Sadraddini and C. Belta, “Robust temporal logic model predictive control,” in 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).   IEEE, 2015, pp. 772–779.
  21. L. Hewing and M. N. Zeilinger, “Stochastic model predictive control for linear systems using probabilistic reachable sets,” in 2018 IEEE Conference on Decision and Control (CDC), 2018, pp. 5182–5188.
  22. M. Farina, L. Giulioni, and R. Scattolini, “Stochastic linear model predictive control with chance constraints–a review,” Journal of Process Control, vol. 44, pp. 53–67, 2016.
  23. K. Leahy, M. Mann, and C.-I. Vasile, “Rewrite-based decomposition of signal temporal logic specifications,” in NASA Formal Methods Symposium.   Springer, 2023, pp. 224–240.
  24. G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for continuous-time signals,” Theoretical Computer Science, vol. 410, no. 42, pp. 4262–4291, 2009.
Citations (1)

Summary

We haven't generated a summary for this paper yet.