Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Feature Fusion Neural Network for Glaucoma Segmentation on Unseen Fundus Images (2404.02084v1)

Published 2 Apr 2024 in cs.CV

Abstract: Fundus image segmentation on unseen domains is challenging, especially for the over-parameterized deep models trained on the small medical datasets. To address this challenge, we propose a method named Adaptive Feature-fusion Neural Network (AFNN) for glaucoma segmentation on unseen domains, which mainly consists of three modules: domain adaptor, feature-fusion network, and self-supervised multi-task learning. Specifically, the domain adaptor helps the pretrained-model fast adapt from other image domains to the medical fundus image domain. Feature-fusion network and self-supervised multi-task learning for the encoder and decoder are introduced to improve the domain generalization ability. In addition, we also design the weighted-dice-loss to improve model performance on complex optic-cup segmentation tasks. Our proposed method achieves a competitive performance over existing fundus segmentation methods on four public glaucoma datasets.

Summary

We haven't generated a summary for this paper yet.