Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WcDT: World-centric Diffusion Transformer for Traffic Scene Generation (2404.02082v4)

Published 2 Apr 2024 in cs.CV

Abstract: In this paper, we introduce a novel approach for autonomous driving trajectory generation by harnessing the complementary strengths of diffusion probabilistic models (a.k.a., diffusion models) and transformers. Our proposed framework, termed the "World-Centric Diffusion Transformer"(WcDT), optimizes the entire trajectory generation process, from feature extraction to model inference. To enhance the scene diversity and stochasticity, the historical trajectory data is first preprocessed into "Agent Move Statement" and encoded into latent space using Denoising Diffusion Probabilistic Models (DDPM) enhanced with Diffusion with Transformer (DiT) blocks. Then, the latent features, historical trajectories, HD map features, and historical traffic signal information are fused with various transformer-based encoders that are used to enhance the interaction of agents with other elements in the traffic scene. The encoded traffic scenes are then decoded by a trajectory decoder to generate multimodal future trajectories. Comprehensive experimental results show that the proposed approach exhibits superior performance in generating both realistic and diverse trajectories, showing its potential for integration into automatic driving simulation systems. Our code is available at \url{https://github.com/yangchen1997/WcDT}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A survey on trajectory-prediction methods for autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 652–674, 2022.
  2. S. Teng, X. Hu, P. Deng, B. Li, Y. Li, Y. Ai, D. Yang, L. Li, Z. Xuanyuan, F. Zhu et al., “Motion planning for autonomous driving: The state of the art and future perspectives,” IEEE Transactions on Intelligent Vehicles, 2023.
  3. B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and control techniques for self-driving urban vehicles,” IEEE Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55, 2016.
  4. D. Chen, K. Zhang, Y. Wang, X. Yin, Z. Li, and D. Filev, “Communication-efficient decentralized multi-agent reinforcement learning for cooperative adaptive cruise control,” IEEE Transactions on Intelligent Vehicles, 2024.
  5. L. Chen, Y. Li, C. Huang, B. Li, Y. Xing, D. Tian, L. Li, Z. Hu, X. Na, Z. Li et al., “Milestones in autonomous driving and intelligent vehicles: Survey of surveys,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1046–1056, 2022.
  6. W. Liu, M. Hua, Z. Deng, Z. Meng, Y. Huang, C. Hu, S. Song, L. Gao, C. Liu, B. Shuai et al., “A systematic survey of control techniques and applications in connected and automated vehicles,” IEEE Internet of Things Journal, 2023.
  7. S. Ge, Y. Xie, K. Liu, Z. Ding, E. Hu, L. Chen, and F.-Y. Wang, “The use of intelligent vehicles and artificial intelligence in mining operations: Ethics, responsibility, and sustainability,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1021–1024, 2023.
  8. M. O’Kelly, A. Sinha, H. Namkoong, R. Tedrake, and J. C. Duchi, “Scalable end-to-end autonomous vehicle testing via rare-event simulation,” Advances in neural information processing systems, vol. 31, 2018.
  9. X. Hu, S. Li, T. Huang, B. Tang, R. Huai, and L. Chen, “How simulation helps autonomous driving: A survey of sim2real, digital twins, and parallel intelligence,” IEEE Transactions on Intelligent Vehicles, 2023.
  10. S. Grollius, M. Ligges, J. Ruskowski, and A. Grabmaier, “Concept of an automotive lidar target simulator for direct time-of-flight lidar,” IEEE Transactions on Intelligent Vehicles, 2021.
  11. E. Weiss and J. C. Gerdes, “High speed emulation in a vehicle-in-the-loop driving simulator,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1826–1836, 2022.
  12. C. Brogle, C. Zhang, K. L. Lim, and T. Bräunl, “Hardware-in-the-loop autonomous driving simulation without real-time constraints,” IEEE Transactions on Intelligent Vehicles, vol. 4, no. 3, pp. 375–384, 2019.
  13. Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray, and M. Pavone, “Guided conditional diffusion for controllable traffic simulation,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 3560–3566.
  14. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000.
  15. Z. Guo, X. Gao, J. Zhou, X. Cai, and B. Shi, “Scenedm: Scene-level multi-agent trajectory generation with consistent diffusion models,” arXiv preprint arXiv:2311.15736, 2023.
  16. Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction,” arXiv preprint arXiv:1910.05449, 2019.
  17. B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti, A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov et al., “Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 7814–7821.
  18. J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs, A. Bewley, C. Liu, A. Venugopal et al., “Scene transformer: A unified architecture for predicting multiple agent trajectories,” arXiv preprint arXiv:2106.08417, 2021.
  19. S. Suo, S. Regalado, S. Casas, and R. Urtasun, “Trafficsim: Learning to simulate realistic multi-agent behaviors,” arXiv preprint arXiv:2101.06557, 2021.
  20. S. Shi, L. Jiang, D. Dai, and B. Schiele, “Motion transformer with global intention localization and local movement refinement,” Advances in Neural Information Processing Systems, 2022.
  21. ——, “Mtr++: Multi-agent motion prediction with symmetric scene modeling and guided intention querying,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
  22. Y. Wang, T. Zhao, and F. Yi, “Multiverse transformer: 1st place solution for waymo open sim agents challenge 2023,” arXiv preprint arXiv:2306.11868, 2023.
  23. Z. Sun, J. Wang, Y. Chen, J. Xu, X. Zhang, Y. Li, Y. Zhang, Z. Liu, J. Guo, T. Huang et al., “Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11 271–11 281.
  24. J. Li, H. Ma, and M. Tomizuka, “Conditional generative neural system for probabilistic trajectory prediction,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 6150–6156.
  25. S. Choi, J. Kim, and H. Yeo, “Trajgail: Generating urban vehicle trajectories using generative adversarial imitation learning,” Transportation Research Part C: Emerging Technologies, vol. 128, p. 103091, 2021.
  26. R. Bhattacharyya, B. Wulfe, D. J. Phillips, A. Kuefler, J. Morton, R. Senanayake, and M. J. Kochenderfer, “Modeling human driving behavior through generative adversarial imitation learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, pp. 2874–2887, 2022.
  27. W. Ding, W. Wang, and D. Zhao, “Multi-vehicle trajectories generation for vehicle-to-vehicle encounters,” in 2019 IEEE International Conference on Robotics and Automation (ICRA), 2019.
  28. G. Oh and H. Peng, “Cvae-h: Conditionalizing variational autoencoders via hypernetworks and trajectory forecasting for autonomous driving,” arXiv preprint arXiv:2201.09874, 2022.
  29. M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Planning with diffusion for flexible behavior synthesis,” arXiv preprint arXiv:2205.09991, 2022.
  30. M. Niedoba, J. W. Lavington, Y. Liu, V. Lioutas, J. Sefas, X. Liang, D. Green, S. Dabiri, B. Zwartsenberg, A. Scibior et al., “A diffusion-model of joint interactive navigation,” arXiv preprint arXiv:2309.12508, 2023.
  31. M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun, “Learning lane graph representations for motion forecasting,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16.   Springer, 2020, pp. 541–556.
  32. E. Brockfeld, R. D. Kühne, A. Skabardonis, and P. Wagner, “Toward benchmarking of microscopic traffic flow models,” Transportation research record, vol. 1852, no. 1, pp. 124–129, 2003.
  33. N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp, “Wayformer: Motion forecasting via simple & efficient attention networks,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 2980–2987.
  34. Y. Gao, Z. Chen, J. Wang, X. Zhang, and Y. Zhang, “Vectornet: Encoding hd maps and agent dynamics from vectorized representation,” arXiv preprint arXiv:2006.05262, 2020.
  35. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
  36. W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4195–4205.
  37. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, pp. 5998–6008, 2017.
  38. K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation,” Computer Science, 2014.
  39. P.-E. Casas, J. Hsu, J. Kuderer, and P. Abbeel, “Multipath: Modelling multiple future driving paths with anchor trajectories,” arXiv preprint arXiv:1904.01124, 2019.
  40. J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.
  41. Waymo, “Waymo open dataset,” https://waymo.com/open/data/motion/, 2021.
  42. N. Montali, J. Lambert, P. Mougin, A. Kuefler, N. Rhinehart, M. Li, C. Gulino, T. Emrich, Z. Yang, S. Whiteson et al., “The waymo open sim agents challenge,” arXiv preprint arXiv:2305.12032, 2023.
  43. J. Gil, L. Martín, C. Montes, and A. Ortega, “A fast procedure for computing the distance between complex objects in three-dimensional space,” Computer graphics forum, vol. 10, no. 4, pp. 331–340, 1991.
  44. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Computer Science, 2014.
  45. I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv e-prints, vol. abs/1608.03983, 2016.
  46. S. Shi, L. Jiang, D. Dai, and B. Schiele, “Mtr++: Multi-agent motion prediction with symmetric scene modeling and guided intention querying,” arXiv preprint arXiv:2306.17770, 2023.
  47. L. Jiang, D. Chen, Z. Li, and Y. Wang, “Risk representation, perception, and propensity in an integrated human lane-change decision model,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 23 474–23 487, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com