Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causality-based Transfer of Driving Scenarios to Unseen Intersections (2404.02046v1)

Published 2 Apr 2024 in cs.CV

Abstract: Scenario-based testing of automated driving functions has become a promising method to reduce time and cost compared to real-world testing. In scenario-based testing automated functions are evaluated in a set of pre-defined scenarios. These scenarios provide information about vehicle behaviors, environmental conditions, or road characteristics using parameters. To create realistic scenarios, parameters and parameter dependencies have to be fitted utilizing real-world data. However, due to the large variety of intersections and movement constellations found in reality, data may not be available for certain scenarios. This paper proposes a methodology to systematically analyze relations between parameters of scenarios. Bayesian networks are utilized to analyze causal dependencies in order to decrease the amount of required data and to transfer causal patterns creating unseen scenarios. Thereby, infrastructural influences on movement patterns are investigated to generate realistic scenarios on unobserved intersections. For evaluation, scenarios and underlying parameters are extracted from the inD dataset. Movement patterns are estimated, transferred and checked against recorded data from those initially unseen intersections.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. H. Winner, K. Lemmer, T. Form, and J. Mazzega, “PEGASUS—first steps for the safe introduction of automated driving,” in Lecture Notes in Mobility.   Springer International Publishing, jun 2018, pp. 185–195.
  2. C. Neurohr, L. Westhofen, T. Henning, T. de Graaff, E. Möhlmann, and E. Böde, “Fundamental considerations around scenario-based testing for automated driving,” in 2020 IEEE intelligent vehicles symposium (IV).   IEEE, 2020, pp. 121–127.
  3. S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer, “Survey on scenario-based safety assessment of automated vehicles,” IEEE Access, vol. 8, pp. 87 456–87 477, 2020.
  4. J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein, “The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections,” in 2020 IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 1929–1934.
  5. International Standartization Organization, “Road vehicles - test scenarios for automated driving systems,” https://www.iso.org/standard/78950.html, 2022.
  6. C. Glasmacher, M. Schuldes, P. Topalakatti, P. Hristov, H. Weber, and L. Eckstein, “Scenario-based model of the odd through scenario databases,” https://vvm-project.de, 2024.
  7. M. Scholtes, L. Westhofen, L. R. Turner, K. Lotto, M. Schuldes, H. Weber, N. Wagener, C. Neurohr, M. H. Bollmann, F. Körtke, et al., “6-layer model for a structured description and categorization of urban traffic and environment,” IEEE Access, vol. 9, pp. 59 131–59 147, 2021.
  8. L. Westhofen, C. Neurohr, M. Butz, M. Scholtes, and M. Schuldes, “Using ontologies for the formalization and recognition of criticality for automated driving,” IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 519–538, 2022.
  9. M. Asano, W. K. Alhajyaseen, K. Suzuki, and H. Nakamura, “Modeling the variation in the trajectory of left turning vehicles considering intersection geometry,” in 90th Transportation Research Board TRB Annual Meeting, 2011.
  10. J. S. Becker, T. Koopmann, B. Neurohr, C. Neurohr, L. Westhofen, B. Wirtz, E. Böde, and W. Damm, “Simulation of abstract scenarios: towards automated tooling in criticality analysis,” Autonomes Fahren. Ein Treiber zukünftiger Mobilität, pp. 42–51, 2022.
  11. H. Weber, C. Glasmacher, M. Schuldes, N. Wagener, and L. Eckstein, “Holistic driving scenario concept for urban traffic,” pp. 1–8, 2023.
  12. K. Lotto, T. Nagler, and M. Radic, “Modeling stochastic data using copulas for applications in the validation of autonomous driving,” Electronics, vol. 11, no. 24, p. 4154, 2022.
  13. H. Elrofai, J.-P. Paardekooper, E. de Gelder, S. Kalisvaart, and O. O. den Camp, “Streetwise: scenario-based safety validation of connected automated driving,” 2018.
  14. G. Bagschik, T. Menzel, and M. Maurer, “Ontology based scene creation for the development of automated vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2018, pp. 1813–1820.
  15. S. Jesenski, J. E. Stellet, F. Schiegg, and J. M. Zöllner, “Generation of scenes in intersections for the validation of highly automated driving functions,” in 2019 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2019, pp. 502–509.
  16. T. Koopmann, C. Neurohr, L. Putze, L. Westhofen, R. Gansch, and A. Adee, “Grasping causality for the explanation of criticality for automated driving,” arXiv preprint arXiv:2210.15375, 2022.
  17. C. Glasmacher, H. Weber, M. Schuldes, N. Wagener, and L. Eckstein, “Generation of concrete parameters from logical urban driving scenarios based on hybrid graphs,” VEHITS, pp. 215–222, 2023.
  18. M. Scholtes, M. Schuldes, H. Weber, N. Wagener, M. Hoss, and L. Eckstein, “Omegaformat: A comprehensive format of traffic recordings for scenario extraction,” FAS-Workshop, pp. 195–205, 2022.
  19. D. Heckerman, D. Geiger, and D. M. Chickering, “Learning bayesian networks: The combination of knowledge and statistical data,” Machine learning, vol. 20, pp. 197–243, 1995.
  20. M. Menéndez, J. Pardo, L. Pardo, and M. Pardo, “The jensen-shannon divergence,” Journal of the Franklin Institute, vol. 334, no. 2, pp. 307–318, 1997. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0016003296000634

Summary

We haven't generated a summary for this paper yet.