Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Regret of Recursive Methods for Discrete-Time Adaptive Control with Matched Uncertainty (2404.02023v2)

Published 2 Apr 2024 in eess.SY and cs.SY

Abstract: Continuous-time adaptive controllers for systems with a matched uncertainty often comprise an online parameter estimator and a corresponding parameterized controller to cancel the uncertainty. However, such methods are often impossible to implement directly, as they depend on an unobserved estimation error. We consider the equivalent discrete-time setting with a causal information structure, and propose a novel, online proximal point method-based adaptive controller, that under a sufficient excitation (SE) condition is asymptotically stable and achieves finite regret, scaling only with the time required to fulfill the SE. We show the same also for the widely-used recursive least squares with exponential forgetting controller under a stronger persistence of excitation condition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. M. Raginsky, A. Rakhlin, and S. Yüksel, “Online convex programming and regularization in adaptive control,” in 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 1957–1962.
  2. A. M. Annaswamy and A. L. Fradkov, “A historical perspective of adaptive control and learning,” Annual Reviews in Control, vol. 52, pp. 18–41, 2021.
  3. M. Nonhoff and M. A. Müller, “On the relation between dynamic regret and closed-loop stability,” Systems & Control Letters, vol. 177, p. 105532, 2023.
  4. A. Karapetyan, A. Tsiamis, E. C. Balta, A. Iannelli, and J. Lygeros, “Implications of regret on stability of linear dynamical systems,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 2583–2588, 2023.
  5. J. E. Gaudio, T. E. Gibson, A. M. Annaswamy, M. A. Bolender, and E. Lavretsky, “Connections between adaptive control and optimization in machine learning,” in 2019 IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 4563–4568.
  6. N. M. Boffi, S. Tu, and J.-J. E. Slotine, “Regret bounds for adaptive nonlinear control,” in Learning for Dynamics and Control.   PMLR, 2021, pp. 471–483.
  7. S. Akhtar, R. Venugopal, and D. S. Bernstein, “Logarithmic lyapunov functions for direct adaptive stabilization with normalized adaptive laws,” International Journal of Control, vol. 77, no. 7, pp. 630–638, 2004.
  8. A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A class of prediction-correction methods for time-varying convex optimization,” IEEE Transactions on Signal Processing, vol. 64, no. 17, pp. 4576–4591, 2016.
  9. E. Dall’Anese, A. Simonetto, and A. Bernstein, “On the convergence of the inexact running Krasnosel’skii–mann method,” IEEE Control Systems Letters, vol. 3, no. 3, pp. 613–618, 2019.
  10. N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and trends® in Optimization, vol. 1, no. 3, pp. 127–239, 2014.
  11. R. M. Johnstone, C. R. Johnson Jr, R. R. Bitmead, and B. D. Anderson, “Exponential convergence of recursive least squares with exponential forgetting factor,” Systems & Control Letters, vol. 2, no. 2, pp. 77–82, 1982.
  12. K. M. Dogan, T. Yucelen, W. M. Haddad, and J. A. Muse, “Improving transient performance of discrete-time model reference adaptive control architectures,” International Journal of Adaptive Control and Signal Processing, vol. 34, no. 7, pp. 901–918, 2020.
  13. D. Angeli, “A Lyapunov approach to incremental stability properties,” IEEE Transactions on Automatic Control, vol. 47, no. 3, pp. 410–421, 2002.
  14. D. N. Tran, B. S. Rüffer, and C. M. Kellett, “Convergence properties for discrete-time nonlinear systems,” IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3415–3422, 2018.
  15. A. Karapetyan, E. C. Balta, A. Iannelli, and J. Lygeros, “Closed-loop finite-time analysis of suboptimal online control,” arXiv preprint arXiv:2312.05607, 2023.
  16. E. Hazan, A. Kalai, S. Kale, and A. Agarwal, “Logarithmic regret algorithms for online convex optimization,” in International Conference on Computational Learning Theory.   Springer, 2006, pp. 499–513.
  17. Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time nonlinear systems,” Automatica, vol. 37, no. 6, pp. 857–869, 2001.
  18. S. Brüggemann and R. R. Bitmead, “Exponential convergence of recursive least squares with forgetting factor for multiple-output systems,” Automatica, vol. 124, p. 109389, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.