On the Effect of Quantization on Dynamic Mode Decomposition (2404.02014v1)
Abstract: Dynamic Mode Decomposition (DMD) is a widely used data-driven algorithm for estimating the Koopman Operator.This paper investigates how the estimation process is affected when the data is quantized. Specifically, we examine the fundamental connection between estimates of the operator obtained from unquantized data and those from quantized data. Furthermore, using the law of large numbers, we demonstrate that, under a large data regime, the quantized estimate can be considered a regularized version of the unquantized estimate. This key theoretical finding paves the way to accurately recover the unquantized estimate from quantized data. We also explore the relationship between the two estimates in the finite data regime. The theory is validated through repeated numerical experiments conducted on three different dynamical systems.
- C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, “Spectral analysis of nonlinear flows,” Journal of Fluid Mechanics, vol. 641, pp. 115–127, 2009.
- I. Nayak, F. L. Teixeira, and M. Kumar, “Koopman autoencoder architecture for current density modeling in kinetic plasma simulations,” in 2021 International Applied Computational Electromagnetics Society Symposium (ACES), pp. 1–3, IEEE, 2021.
- S. Peitz, S. E. Otto, and C. W. Rowley, “Data-driven model predictive control using interpolated Koopman generators,” SIAM Journal on Applied Dynamical Systems, vol. 19, no. 3, pp. 2162–2193, 2020.
- S. S. K. S. Narayanan, D. Tellez-Castro, S. Sutavani, and U. Vaidya, “Se(3) koopman-mpc: Data-driven learning and control of quadrotor uavs,” 2023.
- A. M. Avila and I. Mezić, “Data-driven analysis and forecasting of highway traffic dynamics,” Nature Communications, vol. 11, no. 1, p. 2090, 2020.
- A. S. Dogra and W. Redman, “Optimizing neural networks via koopman operator theory,” in Advances in Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33, pp. 2087–2097, Curran Associates, Inc., 2020.
- M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven approximation of the Koopman operator: extending Dynamic Mode Decomposition,” Journal of Nonlinear Science, vol. 25, pp. 1307–1346, Dec 2015.
- H. Arbabi and I. Mezić, “Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the koopman operator,” SIAM Journal on Applied Dynamical Systems, vol. 16, no. 4, pp. 2096–2126, 2017.
- S. M. Hirsh, K. D. Harris, J. N. Kutz, and B. W. Brunton, “Centering data improves the dynamic mode decomposition,” SIAM Journal on Applied Dynamical Systems, vol. 19, no. 3, pp. 1920–1955, 2020.
- J. Lee, L. Zimmer, T. Saito, S. Nakaya, and M. Tsue, “Effects of spatial resolution of the data on dynamic mode decomposition and its quantitative analysis,” Experimental Thermal and Fluid Science, vol. 151, p. 111077, 2024.
- C. Folkestad, S. X. Wei, and J. W. Burdick, “Koopnet: Joint learning of koopman bilinear models and function dictionaries with application to quadrotor trajectory tracking,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 1344–1350, 2022.
- A. Cleary, K. Yoo, P. Samuel, S. George, F. Sun, and S. A. Israel, “Machine learning on small uavs,” in 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–5, 2020.
- D. F. Hougen, S. Benjaafar, J. C. Bonney, J. R. Budenske, M. Dvorak, M. Gini, H. French, D. G. Krantz, P. Y. Li, F. Malver, et al., “A miniature robotic system for reconnaissance and surveillance,” in International Conference on Robotics and Automation, vol. 1, pp. 501–507, IEEE, 2000.
- A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A survey of quantization methods for efficient neural network inference,” arXiv eprint arXiv:2103.13630, 2021.
- S. Li, X. Ning, L. Wang, T. Liu, X. Shi, S. Yan, G. Dai, H. Yang, and Y. Wang, “Evaluating quantized large language models,” arXiv preprint arXiv:2402.18158, 2024.
- R. M. Gray and T. G. Stockham, “Dithered quantizers,” IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 805–812, 1993.
- P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010.
- S. E. Otto and C. W. Rowley, “Linearly recurrent autoencoder networks for learning dynamics,” SIAM Journal on Applied Dynamical Systems, vol. 18, no. 1, pp. 558–593, 2019.
- E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network representations for koopman operators of nonlinear dynamical systems,” in 2019 American Control Conference (ACC), pp. 4832–4839, 2019.
- L. Roberts, “Picture coding using pseudo-random noise,” IRE Transactions on Information Theory, vol. 8, no. 2, pp. 145–154, 1962.
- 1960.
- G. Batchelor, An Introduction to Fluid Dynamics. Cambridge Mathematical Library, Cambridge University Press, 1967.
- I. Nayak, D. Goswami, M. Kumar, and F. Teixeira, “Temporally-consistent koopman autoencoders for forecasting dynamical systems,” arXiv preprint arXiv:2403.12335, 2024.