2000 character limit reached
Liouville Theory: An Introduction to Rigorous Approaches (2404.02001v3)
Published 2 Apr 2024 in hep-th, math-ph, math.MP, and math.PR
Abstract: In recent years, a surprisingly direct and simple rigorous understanding of quantum Liouville theory has developed. We aim here to make this material more accessible to physicists working on quantum field theory.
- A. M. Polyakov, “Quantum Geometry of Bosonic Strings,” Phys. Lett. 103B (1981) 207.
- T. L. Curtright and C. B. Thorn, “Conformally Invariant Quantization of the Liouville Theory,” Phys .Rev. Lett. 48 (1982) 1309.
- J.-L. Gervais and A. Neveu, “New Quantum Treatment of Liouville Field Theory,” Nucl. Phys. B224 (1983) 329-348.
- V. Knizhnik, A. Polyakov, and A. Zamolodchikov, “Fractal Structure of 2d Quantum Gravity,” Mod. Phys. Lett. A3 (1988) 819.
- M. Goulian and M. Li, “Correlation Functions in Liouville Theory,”’ Phys. Rev. Lett. 66 (1991) 2051.
- N. Seiberg, “Notes on Liouville Theory and Quantum Gravity,” Prog. Theor. Phys. Suppl. 102 (1990) 319-349.
- H. Dorn and H.-J. Otto, “Two and Three Point Functions in Liouville Theory,” Nucl. Phys. B429 (1994) 375–388, arXiv:hep-th/9403141.
- A. Zamolodchikov and Al. Zamolodchikov, “Conformal Bootstrap in Liouville Field Theory,” Nucl. Phys. B477 (1996) 577-605, arXiv:hep-th/9506136.
- J. Teschner, “On the Liouville Three Point Function,” Phys. Lett. B363 (1995) 65D70, hep-th/9507109.
- J. Teschner, “Liouville Theory Revisited,” Class. Quant. Grav. 18 (2001) R153-R222, arXiv:hep-th/0104158.
- Yu. Nakayama, “Liouville Field Theory: A Decade After the Revolution,” Int. J. Mod. Phys. A19 (2004) 2771-2930, arXiv:hep-th/0402009.
- R. Hoegh-Krohn, “ A General Class of Scalar Fields Without Cut-Offs in Two Spacetime Dimensions,” Comm. Math. Phys. 21 (1971) 244-255.
- J.-P. Kahane, “Sur le Chaos Multiplicatif,” Ann. Sci. Math. Québec, 9 (1985), 105-150.
- B. Mandelbrot, “Possible Refinement of the Lognormal Hypothesis Concerning the Distribution of Energy Dissipation in Intermittent Turbulence,” in Statistical Models and Turbulence, eds. M. Rosenblatt and C. Atta, Lecture Notes in Mathematics 12 (Springer, 1972), 331-51.
- B. Duplantier and S. Sheffield, “Liouville Quantum Gravity and KPZ,” Invent. Math. 185 (2011) 333-93.
- F. David, A. Kupiainen, R. Rhodes, and V. Vargas, “Liouville Quantum Gravity on the Riemann Sphere,” Commun. Math. Phys. 342 (2016) 869-907.
- A. Kupiainen, R. Rhodes, and V. Vargas, “Integrability of Liouville Theory: Proof of the DOZZ Formula,” Ann. Math. 191 (2020) 81, arXiv:1707.08785.
- A. Kupiainen, R. Rhodes, and V. Vargas, “Local Conformal Structure of Liouville Quantum Gravity,” Comm. Math. Phys. 371, 1005-69, arXiv:1512.01802.
- V. Vargas, “Lecture Notes on Liouville Theory and the DOZZ Formula,” arXiv:1712.00829.
- Nathanaël Berestycki, “Introduction to the Gaussian Free Field and Liouville Quantum Gravity,” available online.
- R. Robert and V. Vargas, “Gaussian Multiplicative Chaos Revisited,” Ann. Probab. 38 (2010) 605-31, arXiv:0807.1030.
- B. Duplantier, J. Miller, and S. Sheffield, “Liouville Quantum Gravity as a Mating of Trees,” Asterisque (2021) 427, arXiv:1409.7055.
- C. Guillarmou, A. Kupiainen, and R. Rhodes, “Review of the Probabilistic Construction and Conformal Bootstrap in Liouville Theory,” arXiv:2403.12780.
- V. S. Dotsenko and V. A. Fateev, “Four Point Correlation Functions and the Operator Algebra in the Two-Dimensional Conformal Invariant Theories with the Central Charge c<1𝑐1c<1italic_c < 1,” Nucl. Phys. B251 (1985) 691.
- B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, “Critical Gaussian Multiplicative Chaos: Convergence of the Derivative Martingale,” Ann. Prob. 42 (2014) 1969-1808, arXiv:1206.1671.
- D. Harlow, J. Maltz, and E. Witten, “Analytic Continuation of Liouville Theory,” JHEP 12 (2011) 071, arXiv:1108.4417.
- E. Bacry and J.-F. Muzy, “Log-infinitely Divisible Multifractal Process,” Commun. Math. Phys. 236 (2003) 449-75.