Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting the Intention to Interact with a Service Robot:the Role of Gaze Cues (2404.01986v1)

Published 2 Apr 2024 in cs.RO, cs.AI, and cs.LG

Abstract: For a service robot, it is crucial to perceive as early as possible that an approaching person intends to interact: in this case, it can proactively enact friendly behaviors that lead to an improved user experience. We solve this perception task with a sequence-to-sequence classifier of a potential user intention to interact, which can be trained in a self-supervised way. Our main contribution is a study of the benefit of features representing the person's gaze in this context. Extensive experiments on a novel dataset show that the inclusion of gaze cues significantly improves the classifier performance (AUROC increases from 84.5% to 91.2%); the distance at which an accurate classification can be achieved improves from 2.4 m to 3.2 m. We also quantify the system's ability to adapt to new environments without external supervision. Qualitative experiments show practical applications with a waiter robot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. G. A. Zachiotis, G. Andrikopoulos, R. Gornez, K. Nakamura, and G. Nikolakopoulos, “A survey on the application trends of home service robotics,” in IEEE Int. Conf. on Robotics and Biomimetics, 2018, pp. 1999–2006.
  2. M. K. Lee, S. Kiesler, and J. Forlizzi, “Receptionist or information kiosk: how do people talk with a robot?” in ACM Conference on Computer Supported Cooperative work, 2010, pp. 31–40.
  3. A. Tuomi, I. P. Tussyadiah, and J. Stienmetz, “Applications and implications of service robots in hospitality,” Cornell Hospitality Quarterly, vol. 62, no. 2, pp. 232–247, 2021.
  4. J. Urakami and K. Seaborn, “Nonverbal cues in human–robot interaction: A communication studies perspective,” ACM Transactions on Human-Robot Interaction, vol. 12, no. 2, pp. 1–21, 2023.
  5. L. Takayama and C. Pantofaru, “Influences on proxemic behaviors in human-robot interaction,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2009, pp. 5495–5502.
  6. G. Abbate, A. Giusti, V. Schmuck, O. Celiktutan, and A. Paolillo, “Self-supervised prediction of the intention to interact with a service robot,” Robotics and Autonomous Systems, vol. 171, p. 104568, 2024.
  7. N. Gasteiger, M. Hellou, and H. S. Ahn, “Factors for personalization and localization to optimize human–robot interaction: A literature review,” International Journal of Social Robotics, pp. 1–13, 2021.
  8. S. Saunderson and G. Nejat, “How robots influence humans: A survey of nonverbal communication in social human–robot interaction,” International Journal of Social Robotics, vol. 11, pp. 575–608, 2019.
  9. J. Rios-Martinez, A. Spalanzani, and C. Laugier, “From proxemics theory to socially-aware navigation: A survey,” International Journal of Social Robotics, vol. 7, pp. 137–153, 2015.
  10. P. Agand, M. Taherahmadi, A. Lim, and M. Chen, “Human Navigational Intent Inference with Probabilistic and Optimal Approaches,” in IEEE Int. Conf. on Robotics and Automation, 2022, pp. 8562–8568.
  11. A. Belardinelli, A. R. Kondapally, D. Ruiken, D. Tanneberg, and T. Watabe, “Intention estimation from gaze and motion features for human-robot shared-control object manipulation,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2022, pp. 9806–9813.
  12. S. Vinanzi, C. Goerick, and A. Cangelosi, “Mindreading for Robots: Predicting Intentions via Dynamical Clustering of Human Postures,” in Int. Conf. on Development and Learning and Epigenetic Robotics, 2019, pp. 272–277.
  13. A. Zaraki, M. Giuliani, M. B. Dehkordi, D. Mazzei, A. D’ursi, and D. De Rossi, “An RGB-D based social behavior interpretation system for a humanoid social robot,” in RSI/ISM International Conference on Robotics and Mechatronics, 2014, pp. 185–190.
  14. A. Gaschler, S. Jentzsch, M. Giuliani, K. Huth, J. de Ruiter, and A. Knoll, “Social behavior recognition using body posture and head pose for human-robot interaction,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2012, pp. 2128–2133.
  15. F. Del Duchetto, P. Baxter, and M. Hanheide, “Are you still with me? continuous engagement assessment from a robot’s point of view,” Frontiers in Rob. and AI, vol. 7, p. 116, 2020.
  16. A. Belardinelli, “Gaze-based intention estimation: principles, methodologies, and applications in HRI,” 2023, arXiv:2302.04530 [cs].
  17. H. Admoni and B. Scassellati, “Social eye gaze in human-robot interaction: a review,” Journal of Human-Robot Interaction, vol. 6, no. 1, May 2017.
  18. X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based gaze estimation in the wild,” in IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4511–4520.
  19. K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik, and A. Torralba, “Eye tracking for everyone,” in IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2176–2184.
  20. X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “It’s written all over your face: Full-face appearance-based gaze estimation,” in IEEE Conference on Computer Vision and Pattern Recognition workshops, 2017, pp. 51–60.
  21. C. Hennessey and J. Fiset, “Long range eye tracking: bringing eye tracking into the living room,” in Proceedings of the Symposium on Eye Tracking Research and Applications, 2012, pp. 249–252.
  22. D.-C. Cho and W.-Y. Kim, “Long-range gaze tracking system for large movements,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 12, pp. 3432–3440, 2013.
  23. M. Zhang, Y. Liu, and F. Lu, “Gazeonce: Real-time multi-person gaze estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4197–4206.
  24. E. Chong, E. Clark-Whitney, A. Southerland, E. Stubbs, C. Miller, E. L. Ajodan, M. R. Silverman, C. Lord, A. Rozga, R. M. Jones et al., “Detection of eye contact with deep neural networks is as accurate as human experts,” Nature communications, vol. 11, no. 1, p. 6386, 2020.
  25. M. Lombardi, E. Maiettini, D. De Tommaso, A. Wykowska, and L. Natale, “Toward an attentive robotic architecture: Learning-based mutual gaze estimation in human–robot interaction,” Frontiers in Robotics and AI, vol. 9, p. 770165, 2022.
  26. M. Brenner, H. Brock, A. Stiegler, and R. Gomez, “Developing an engagement-aware system for the detection of unfocused interaction,” in Int. Symp. on Robot and Human Interactive Communication, 2021, pp. 798–805.
  27. D. Vaufreydaz, W. Johal, and C. Combe, “Starting engagement detection towards a companion robot using multimodal features,” Robot. Auton. Syst., vol. 75, pp. 4–16, 2016.
  28. Y. Kato, T. Kanda, and H. Ishiguro, “May I help you? - Design of human-like polite approaching behavior-,” in ACM/IEEE Int. Conf. on Human-Robot Interaction, 2015, pp. 35–42.
  29. J. Bi, F.-c. Hu, Y.-j. Wang, M.-n. Luo, and M. He, “A method based on interpretable machine learning for recognizing the intensity of human engagement intention,” Scientific Reports, vol. 13, no. 1, p. 2537, 2023.
  30. L. Jing and Y. Tian, “Self-supervised visual feature learning with deep neural networks: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
  31. C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning,” in IEEE International Conference on Computer Vision, 2017, pp. 2051–2060.
  32. M. Nava, A. Paolillo, J. Guzzi, L. M. Gambardella, and A. Giusti, “Learning visual localization of a quadrotor using its noise as self-supervision,” IEEE Robot. and Autom. Lett., vol. 7, no. 2, pp. 2218–2225, 2022.
  33. ——, “Uncertainty-aware self-supervised learning of spatial perception tasks,” IEEE Robot. and Autom. Lett., vol. 6, no. 4, pp. 6693–6700, 2021.
  34. A. Lookingbill, J. Rogers, D. Lieb, J. Curry, and S. Thrun, “Reverse optical flow for self-supervised adaptive autonomous robot navigation,” International Journal of Computer Vision, vol. 74, pp. 287–302, 2006.
  35. R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller, and Y. LeCun, “Learning long-range vision for autonomous off-road driving,” J. Field Robot., vol. 26, no. 2, pp. 120–144, 2009.
  36. J. Pages, L. Marchionni, and F. Ferro, “Tiago: the modular robot that adapts to different research needs,” 2016.
  37. A. K. Pandey and R. Gelin, “A mass-produced sociable humanoid robot: Pepper: The first machine of its kind,” IEEE Robot. Autom. Mag., pp. 1–1, 07 2018.
  38. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  39. S. Arreghini, G. Abbate, A. Giusti, and A. Paolillo, “A long-range mutual gaze detector for HRI,” in ACM/IEEE Int. Conf. on Human-Robot Interaction, 2024, pp. –.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com