Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BOSS Constraints on Massive Particles during Inflation: The Cosmological Collider in Action (2404.01894v2)

Published 2 Apr 2024 in astro-ph.CO, hep-ph, and hep-th

Abstract: Massive particles leave imprints on primordial non-Gaussianity via couplings to the inflaton, even despite their exponential dilution during inflation: practically, the Universe acts as a Cosmological Collider. We present the first dedicated search for spin-zero particles using BOSS redshift-space galaxy power spectrum and bispectrum multipoles, as well as Planck CMB non-Gaussianity data. We demonstrate that some Cosmological Collider models are well approximated by the standard equilateral and orthogonal parametrization; assuming negligible inflaton self-interactions, this facilitates us translating Planck non-Gaussianity constraints into bounds on Collider models. Many models have signatures that are not degenerate with equilateral and orthogonal non-Gaussianity and thus require dedicated searches. Here, we constrain such models using BOSS three-dimensional redshift-space galaxy clustering data, focusing on spin-zero particles in the principal series (i.e. with mass $m\geq 3H/2$) and constraining their couplings to the inflaton at varying speed and mass, marginalizing over the unknown inflaton self-interactions. This is made possible through an improvement in Cosmological Bootstrap techniques and the combination of perturbation theory and halo occupation distribution models for galaxy clustering. Our work sets the standard for inflationary spectroscopy with cosmological observations, providing the ultimate link between physics on the largest and smallest scales.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. X. Chen and Y. Wang, Phys. Rev. D 81, 063511 (2010a), arXiv:0909.0496 [astro-ph.CO] .
  2. X. Chen and Y. Wang, JCAP 04, 027 (2010b), arXiv:0911.3380 [hep-th] .
  3. X. Chen, Adv. Astron. 2010, 638979 (2010), arXiv:1002.1416 [astro-ph.CO] .
  4. D. Baumann and D. Green, Phys. Rev. D 85, 103520 (2012), arXiv:1109.0292 [hep-th] .
  5. X. Chen and Y. Wang, JCAP 09, 021 (2012), arXiv:1205.0160 [hep-th] .
  6. N. Arkani-Hamed and J. Maldacena,   (2015), arXiv:1503.08043 [hep-th] .
  7. A. Kehagias and A. Riotto, JCAP 07, 046 (2017), arXiv:1705.05834 [hep-th] .
  8. S. Kumar and R. Sundrum, JHEP 05, 011 (2018), arXiv:1711.03988 [hep-ph] .
  9. S. Kumar and R. Sundrum, JHEP 04, 120 (2019), arXiv:1811.11200 [hep-ph] .
  10. S. Kumar and R. Sundrum, JHEP 04, 077 (2020), arXiv:1908.11378 [hep-ph] .
  11. L.-T. Wang and Z.-Z. Xianyu, JHEP 02, 044 (2020), arXiv:1910.12876 [hep-ph] .
  12. E. Pajer, JCAP 01, 023 (2021), arXiv:2010.12818 [hep-th] .
  13. S. Melville and E. Pajer, JHEP 05, 249 (2021), arXiv:2103.09832 [hep-th] .
  14. G. L. Pimentel and D.-G. Wang, JHEP 10, 177 (2022), arXiv:2205.00013 [hep-th] .
  15. S. Jazayeri and S. Renaux-Petel, JHEP 12, 137 (2022), arXiv:2205.10340 [hep-th] .
  16. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A9 (2020), arXiv:1905.05697 [astro-ph.CO] .
  17. A. Chudaykin and M. M. Ivanov, JCAP 11, 034 (2019), arXiv:1907.06666 [astro-ph.CO] .
  18. M. M. Ivanov, “Effective Field Theory for Large-Scale Structure,”  (2023) arXiv:2212.08488 [astro-ph.CO] .
  19. O. H. E. Philcox, Phys. Rev. D 106, 063501 (2022), arXiv:2206.04227 [astro-ph.CO] .
  20. O. H. E. Philcox, Phys. Rev. Lett. 131, 181001 (2023a), arXiv:2303.12106 [astro-ph.CO] .
  21. O. H. E. Philcox and M. M. Ivanov,   (2021), arXiv:2112.04515 [astro-ph.CO] .
  22. R. Scoccimarro, Astrophys. J. 544, 597 (2000), arXiv:astro-ph/0004086 .
  23. O. H. E. Philcox, Phys. Rev. D 103, 103504 (2021a), arXiv:2012.09389 [astro-ph.CO] .
  24. O. H. E. Philcox, Phys. Rev. D 104, 123529 (2021b), arXiv:2107.06287 [astro-ph.CO] .
  25. K. Akitsu, in preparation .
  26. L. Bordin and G. Cabass, JCAP 07, 014 (2020), arXiv:2004.00619 [astro-ph.CO] .
  27. N. Aghanim et al. (Planck),   (2018), arXiv:1807.06209 [astro-ph.CO] .
  28. D. Baumann and D. Green, JCAP 08, 061 (2022), arXiv:2112.14645 [astro-ph.CO] .
  29. S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO] .
  30. D. J. Eisenstein et al. (SDSS), Astron. J. 142, 72 (2011), arXiv:1101.1529 [astro-ph.IM] .
  31. F.-S. Kitaura et al., Mon. Not. Roy. Astron. Soc. 456, 4156 (2016), arXiv:1509.06400 [astro-ph.CO] .
  32. E. Sefusatti and E. Komatsu, Phys. Rev. D 76, 083004 (2007), arXiv:0705.0343 [astro-ph] .
  33. E. Sefusatti, Phys. Rev. D 80, 123002 (2009), arXiv:0905.0717 [astro-ph.CO] .
  34. F. Schmidt, Phys. Rev. D 87, 123518 (2013), arXiv:1304.1817 [astro-ph.CO] .
  35. F. Schmidt and M. Kamionkowski, Phys. Rev. D 82, 103002 (2010), arXiv:1008.0638 [astro-ph.CO] .
  36. L. Senatore and M. Zaldarriaga, JCAP 1502, 013 (2015), arXiv:1404.5954 [astro-ph.CO] .
  37. M. M. Ivanov and S. Sibiryakov, JCAP 1807, 053 (2018), arXiv:1804.05080 [astro-ph.CO] .
  38. C. Alcock and B. Paczynski, Nature 281, 358 (1979).
  39. E. Pajer and M. Zaldarriaga, JCAP 08, 037 (2013), arXiv:1301.7182 [astro-ph.CO] .
  40. R. Laureijs et al. (EUCLID),   (2011), arXiv:1110.3193 [astro-ph.CO] .
  41. A. Aghamousa et al. (DESI),   (2016), arXiv:1611.00036 [astro-ph.IM] .
  42. D. J. Schlegel et al.,   (2019), arXiv:1907.11171 [astro-ph.IM] .
  43. O. H. E. Philcox, Phys. Rev. D 107, 123516 (2023b), arXiv:2303.08828 [astro-ph.CO] .
  44. O. H. E. Philcox, Phys. Rev. D 108, 063506 (2023c), arXiv:2306.03915 [astro-ph.CO] .
  45. T. Brinckmann and J. Lesgourgues, Phys. Dark Univ. 24, 100260 (2019), arXiv:1804.07261 [astro-ph.CO] .
  46. A. Lewis,   (2019), arXiv:1910.13970 [astro-ph.IM] .
Citations (8)

Summary

We haven't generated a summary for this paper yet.