A Kerr kernel quantum learning machine (2404.01787v1)
Abstract: Kernel methods are of current interest in quantum machine learning due to similarities with quantum computing in how they process information in high-dimensional feature (Hilbert) spaces. Kernels are believed to offer particular advantages when they cannot be computed classically, so a kernel matrix with indisputably nonclassical elements is desirable provided it can be generated efficiently in a particular physical machine. Kerr nonlinearities, known to be a route to universal continuous variable (CV) quantum computation, may be able to play this role for quantum machine learning. We propose a quantum hardware kernel implementation scheme based on superconducting quantum circuits. The scheme does not use qubits or quantum circuits but rather exploits the analogue features of Kerr coupled modes. Our approach is more akin to the growing number of analog machine learning schemes based on sampling quantum probabilities directly in an engineered device by stochastic quantum control.
- D. P. Garcia, J. Cruz-Benito, and F. J. Garcia-Penalvo, “Systematic literature review: Quantum machine learning and its applications,” (2023), arXiv:2201.04093 [quant-ph] .
- Q. Wang, C. C. Wanjura, and F. Marquardt, “Training coupled phase oscillators as a neuromorphic platform using equilibrium propagation,” (2024), arXiv:2402.08579 [cs.ET] .
- J. Laydevant, L. G. Wright, T. Wang, and P. L. McMahon, “The hardware is the software,” (2023), arXiv:2310.18335 [cs.ET] .
- P. J. Coles, C. Szczepanski, D. Melanson, K. Donatella, A. J. Martinez, and F. Sbahi, “Thermodynamic ai and the fluctuation frontier,” (2023), arXiv:2302.06584 [cs.ET] .
- https://www.extropic.ai/future (2024).
- J. R. Glick, T. P. Gujarati, A. D. Corcoles, Y. Kim, A. Kandala, J. M. Gambetta, and K. Temme, “Covariant quantum kernels for data with group structure,” (2022), arXiv:2105.03406 [quant-ph] .
- M. Schuld and F. Petruccione, “Quantum models as kernel methods,” in Machine Learning with Quantum Computers (Springer International Publishing, Cham, 2021) pp. 217–245.
- R. Ghobadi, Phys. Rev. A 104, 052403 (2021).
- M. Schuld, “Supervised quantum machine learning models are kernel methods,” (2021), arXiv:2101.11020 [quant-ph] .
- W. K. Wootters, Phys. Rev. D 23, 357 (1981).
- S. C. et al., Quantum Sci. Technol 8, 025022 (2023).
- A. Royer, Phys. Rev. A 15, 449 (1977).
- S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
- D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 2008).
- M. V. Berry and J. Goldberg, Nonlinearity 1, 1 (1988).
- G. J. Milburn and C. A. Holmes, Phys. Rev. Lett. 56, 2237 (1986).
- G. J. Milburn and S. Basiri-Esfahani, Contemporary Physics 63, 34 (2022).
- This particular example is for the coherent state with cross-Kerr nonlinearity.
- Manageable for computation time - see tables for data set sizes.
- D. F. Walls and G. J. Milburn, Phys. Rev. A 31, 2403 (1985).
- J. Bowles, S. Ahmed, and M. Schuld, “Better than classical? the subtle art of benchmarking quantum machine learning models,” (2024), arXiv:2403.07059 [quant-ph] .
- A. Alexanderian, “A brief note on the karhunen-loève expansion,” (2015), arXiv:1509.07526 [math.PR] .