Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stability-Based Abstraction Framework for Reach-Avoid Control of Stochastic Dynamical Systems with Unknown Noise Distributions (2404.01726v1)

Published 2 Apr 2024 in eess.SY and cs.SY

Abstract: Finite-state abstractions are widely studied for the automated synthesis of correct-by-construction controllers for stochastic dynamical systems. However, existing abstraction methods often lead to prohibitively large finite-state models. To address this issue, we propose a novel abstraction scheme for stochastic linear systems that exploits the system's stability to obtain significantly smaller abstract models. As a unique feature, we first stabilize the open-loop dynamics using a linear feedback gain. We then use a model-based approach to abstract a known part of the stabilized dynamics while using a data-driven method to account for the stochastic uncertainty. We formalize abstractions as Markov decision processes (MDPs) with intervals of transition probabilities. By stabilizing the dynamics, we can further constrain the control input modeled in the abstraction, which leads to smaller abstract models while retaining the correctness of controllers. Moreover, when the stabilizing feedback controller is aligned with the property of interest, then a good trade-off is achieved between the reduction in the abstraction size and the performance loss. The experiments show that our approach can reduce the size of the graph of abstractions by up to 90% with negligible performance loss.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated verification and synthesis of stochastic hybrid systems: A survey,” Autom., vol. 146, p. 110617, 2022.
  2. A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems,” Autom., vol. 44, no. 11, pp. 2724–2734, 2008.
  3. M. Lahijanian, S. B. Andersson, and C. Belta, “Formal verification and synthesis for discrete-time stochastic systems,” IEEE Trans. Autom. Control., vol. 60, no. 8, pp. 2031–2045, 2015.
  4. P. Tabuada, Verification and Control of Hybrid Systems - A Symbolic Approach. Springer, 2009.
  5. G. Reissig, A. Weber, and M. Rungger, “Feedback refinement relations for the synthesis of symbolic controllers,” IEEE Trans. Autom. Control., vol. 62, no. 4, pp. 1781–1796, 2017.
  6. A. Makdesi, A. Girard, and L. Fribourg, “Efficient data-driven abstraction of monotone systems with disturbances,” in ADHS, vol. 54 of IFAC-PapersOnLine, pp. 49–54, Elsevier, 2021.
  7. R. Coppola, A. Peruffo, and M. Mazo Jr., “Data-driven abstractions for verification of linear systems,” IEEE Control. Syst. Lett., vol. 7, pp. 2737–2742, 2023.
  8. A. Lavaei and E. Frazzoli, “Data-driven synthesis of symbolic abstractions with guaranteed confidence,” IEEE Control. Syst. Lett., vol. 7, pp. 253–258, 2023.
  9. M. Kazemi, R. Majumdar, M. Salamati, S. Soudjani, and B. Wooding, “Data-driven abstraction-based control synthesis,” Nonlinear Analysis: Hybrid Systems, vol. 52, p. 101467, 2024.
  10. K. Hashimoto, A. Saoud, M. Kishida, T. Ushio, and D. V. Dimarogonas, “Learning-based symbolic abstractions for nonlinear control systems,” Autom., vol. 146, p. 110646, 2022.
  11. S. Sadraddini and C. Belta, “Formal guarantees in data-driven model identification and control synthesis,” in HSCC, pp. 147–156, ACM, 2018.
  12. A. Devonport, A. Saoud, and M. Arcak, “Symbolic abstractions from data: A PAC learning approach,” in CDC, pp. 599–604, IEEE, 2021.
  13. A. Banse, L. Romao, A. Abate, and R. M. Jungers, “Data-driven abstractions via adaptive refinements and a Kantorovich metric [extended version],” CoRR, vol. abs/2303.17618, 2023.
  14. T. S. Badings, A. Abate, N. Jansen, D. Parker, H. A. Poonawala, and M. Stoelinga, “Sampling-based robust control of autonomous systems with non-Gaussian noise,” in AAAI, pp. 9669–9678, AAAI Press, 2022.
  15. T. S. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala, M. Stoelinga, and N. Jansen, “Robust control for dynamical systems with non-Gaussian noise via formal abstractions,” J. Artif. Intell. Res., vol. 76, pp. 341–391, 2023.
  16. Pearson, 2019.
  17. A. Girard, “Approximately bisimilar finite abstractions of stable linear systems,” in HSCC, vol. 4416 of LNCS, pp. 231–244, Springer, 2007.
  18. A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic models for incrementally stable switched systems,” IEEE Trans. Autom. Control., vol. 55, no. 1, pp. 116–126, 2010.
  19. P. Tabuada, “An approximate simulation approach to symbolic control,” IEEE Trans. Autom. Control., vol. 53, no. 6, pp. 1406–1418, 2008.
  20. G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic models for nonlinear control systems,” Autom., vol. 44, no. 10, pp. 2508–2516, 2008.
  21. M. Zamani, G. Pola, M. Mazo Jr., and P. Tabuada, “Symbolic models for nonlinear control systems without stability assumptions,” IEEE Trans. Autom. Control., vol. 57, no. 7, pp. 1804–1809, 2012.
  22. M. C. Campi, A. Carè, and S. Garatti, “The scenario approach: A tool at the service of data-driven decision making,” Annu. Rev. Control., vol. 52, pp. 1–17, 2021.
  23. L. Romao, A. Papachristodoulou, and K. Margellos, “On the exact feasibility of convex scenario programs with discarded constraints,” IEEE Trans. Autom. Control., vol. 68, no. 4, pp. 1986–2001, 2023.
  24. R. Durrett, Stochastic Calculus: A Practical Introduction. CRC Press, 1st ed., 1996.
  25. D. Salamon, Measure and Integration. European Mathematical Society, 2016, 2016.
  26. D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete-time Case. Athena Scientific, 1978.
  27. C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.
  28. A. Puggelli, W. Li, A. L. Sangiovanni-Vincentelli, and S. A. Seshia, “Polynomial-time verification of PCTL properties of MDPs with convex uncertainties,” in CAV, vol. 8044 of LNCS, pp. 527–542, Springer, 2013.
  29. H. Hermanns, A. Parma, R. Segala, B. Wachter, and L. Zhang, “Probabilistic logical characterization,” Inf. Comput., vol. 209, no. 2, pp. 154–172, 2011.
  30. L. Rickard, T. S. Badings, L. Romao, and A. Abate, “Formal controller synthesis for Markov jump linear systems with uncertain dynamics,” in QEST, vol. 14287 of LNCS, pp. 10–29, Springer, 2023.
  31. Springer, 2017.
  32. M. C. Campi and S. Garatti, “A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality,” J. Optim. Theory Appl., vol. 148, no. 2, pp. 257–280, 2011.
  33. M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic real-time systems,” in CAV, vol. 6806 of LNCS, pp. 585–591, Springer, 2011.
  34. A. P. Vinod, J. D. Gleason, and M. M. K. Oishi, “Sreachtools: a MATLAB stochastic reachability toolbox,” in HSCC, pp. 33–38, ACM, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.