Classifying Cancer Stage with Open-Source Clinical Large Language Models (2404.01589v1)
Abstract: Cancer stage classification is important for making treatment and care management plans for oncology patients. Information on staging is often included in unstructured form in clinical, pathology, radiology and other free-text reports in the electronic health record system, requiring extensive work to parse and obtain. To facilitate the extraction of this information, previous NLP approaches rely on labeled training datasets, which are labor-intensive to prepare. In this study, we demonstrate that without any labeled training data, open-source clinical LLMs can extract pathologic tumor-node-metastasis (pTNM) staging information from real-world pathology reports. Our experiments compare LLMs and a BERT-based model fine-tuned using the labeled data. Our findings suggest that while LLMs still exhibit subpar performance in Tumor (T) classification, with the appropriate adoption of prompting strategies, they can achieve comparable performance on Metastasis (M) classification and improved performance on Node (N) classification.
- “Cancer of Any Site - Cancer Stat Facts.” [Online]. Available: https://seer.cancer.gov/statfacts/html/all.html
- “FastStats,” Jan. 2024. [Online]. Available: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
- “Cancer Staging Systems.” [Online]. Available: https://www.facs.org/quality-programs/cancer-programs/american-joint-committee-on-cancer/cancer-staging-systems/
- “American Joint Committee on Cancer | SEER Training.” [Online]. Available: https://training.seer.cancer.gov/staging/systems/ajcc/
- S. Gao, M. T. Young, J. X. Qiu, H.-J. Yoon, J. B. Christian, P. A. Fearn, G. D. Tourassi, and A. Ramanthan, “Hierarchical attention networks for information extraction from cancer pathology reports,” Journal of the American Medical Informatics Association, vol. 25, no. 3, pp. 321–330, Mar. 2018. [Online]. Available: https://academic.oup.com/jamia/article/25/3/321/4636780
- S. Gao, J. X. Qiu, M. Alawad, J. D. Hinkle, N. Schaefferkoetter, H.-J. Yoon, B. Christian, P. A. Fearn, L. Penberthy, X.-C. Wu, L. Coyle, G. Tourassi, and A. Ramanathan, “Classifying cancer pathology reports with hierarchical self-attention networks,” Artificial Intelligence in Medicine, vol. 101, p. 101726, Nov. 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0933365719303562
- J. Wu, K. Tang, H. Zhang, C. Wang, and C. Li, “Structured Information Extraction of Pathology Reports with Attention-based Graph Convolutional Network,” in 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec. 2020, pp. 2395–2402. [Online]. Available: https://ieeexplore.ieee.org/document/9313347
- J. Kefeli and N. Tatonetti, “Generalizable and Automated Classification of TNM Stage from Pathology Reports with External Validation,” medRxiv, p. 2023.06.26.23291912, Jun. 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327265/
- K. De Angeli, S. Gao, M. Alawad, H.-J. Yoon, N. Schaefferkoetter, X.-C. Wu, E. B. Durbin, J. Doherty, A. Stroup, L. Coyle, L. Penberthy, and G. Tourassi, “Deep active learning for classifying cancer pathology reports,” BMC Bioinformatics, vol. 22, no. 1, p. 113, Mar. 2021. [Online]. Available: https://doi.org/10.1186/s12859-021-04047-1
- A. Y. Odisho, B. Park, N. Altieri, J. DeNero, M. R. Cooperberg, P. R. Carroll, and B. Yu, “Natural language processing systems for pathology parsing in limited data environments with uncertainty estimation,” JAMIA Open, vol. 3, no. 3, pp. 431–438, Oct. 2020, publisher: Oxford Academic. [Online]. Available: https://dx.doi.org/10.1093/jamiaopen/ooaa029
- C. Wu, W. Lin, X. Zhang, Y. Zhang, Y. Wang, and W. Xie, “PMC-LLaMA: Towards Building Open-source Language Models for Medicine,” Aug. 2023, arXiv:2304.14454 [cs]. [Online]. Available: http://arxiv.org/abs/2304.14454
- T. Han, L. C. Adams, J.-M. Papaioannou, P. Grundmann, T. Oberhauser, A. Löser, D. Truhn, and K. K. Bressem, “MedAlpaca – An Open-Source Collection of Medical Conversational AI Models and Training Data,” Oct. 2023, arXiv:2304.08247 [cs]. [Online]. Available: http://arxiv.org/abs/2304.08247
- A. Toma, P. R. Lawler, J. Ba, R. G. Krishnan, B. B. Rubin, and B. Wang, “Clinical Camel: An Open Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding,” Aug. 2023, arXiv:2305.12031 [cs]. [Online]. Available: http://arxiv.org/abs/2305.12031
- J. Kefeli and N. Tatonetti, “TCGA-Reports: A machine-readable pathology report resource for benchmarking text-based AI models,” Patterns, Feb. 2024, publisher: Elsevier. [Online]. Available: https://www.cell.com/patterns/abstract/S2666-3899(24)00024-2
- Y. Li, R. M. Wehbe, F. S. Ahmad, H. Wang, and Y. Luo, “Clinical-Longformer and Clinical-BigBird: Transformers for long clinical sequences,” 2022, publisher: arXiv Version Number: 3. [Online]. Available: https://arxiv.org/abs/2201.11838
- J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, “BioBERT: a pre-trained biomedical language representation model for biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240, Feb. 2020. [Online]. Available: https://doi.org/10.1093/bioinformatics/btz682
- K. Huang, J. Altosaar, and R. Ranganath, “ClinicalBERT: Modeling Clinical Notes and Predicting Hospital Readmission,” Nov. 2020, arXiv:1904.05342 [cs]. [Online]. Available: http://arxiv.org/abs/1904.05342
- H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open Foundation and Fine-Tuned Chat Models,” Jul. 2023, arXiv:2307.09288 [cs]. [Online]. Available: http://arxiv.org/abs/2307.09288
- Y. Li, Z. Li, K. Zhang, R. Dan, and Y. Zhang, “ChatDoctor: A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge,” Apr. 2023, arXiv:2303.14070 [cs]. [Online]. Available: http://arxiv.org/abs/2303.14070
- T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large Language Models are Zero-Shot Reasoners,” Advances in Neural Information Processing Systems, vol. 35, pp. 22 199–22 213, Dec. 2022. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
- T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language Models are Few-Shot Learners,” in Advances in Neural Information Processing Systems, vol. 33. Curran Associates, Inc., Jul. 2020, pp. 1877–1901.
- M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr, “Quantifying Language Models’ Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting,” Oct. 2023, arXiv:2310.11324 [cs]. [Online]. Available: http://arxiv.org/abs/2310.11324
- “Common Cancer Sites - Cancer Stat Facts.” [Online]. Available: https://seer.cancer.gov/statfacts/html/common.html
- Chia-Hsuan Chang (8 papers)
- Mary M. Lucas (3 papers)
- Grace Lu-Yao (2 papers)
- Christopher C. Yang (10 papers)