Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated User Story Generation with Test Case Specification Using Large Language Model (2404.01558v1)

Published 2 Apr 2024 in cs.SE and cs.AI

Abstract: Modern Software Engineering era is moving fast with the assistance of AI, especially LLMs (LLM). Researchers have already started automating many parts of the software development workflow. Requirements Engineering (RE) is a crucial phase that begins the software development cycle through multiple discussions on a proposed scope of work documented in different forms. RE phase ends with a list of user-stories for each unit task identified through discussions and usually these are created and tracked on a project management tool such as Jira, AzurDev etc. In this research we developed a tool "GeneUS" using GPT-4.0 to automatically create user stories from requirements document which is the outcome of the RE phase. The output is provided in JSON format leaving the possibilities open for downstream integration to the popular project management tools. Analyzing requirements documents takes significant effort and multiple meetings with stakeholders. We believe, automating this process will certainly reduce additional load off the software engineers, and increase the productivity since they will be able to utilize their time on other prioritized tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. G. Lucassen, F. Dalpiaz, J. M. E. v. d. Werf, and S. Brinkkemper, “The use and effectiveness of user stories in practice,” in Requirements Engineering: Foundation for Software Quality: 22nd International Working Conference, REFSQ 2016, Gothenburg, Sweden, March 14-17, 2016, Proceedings 22.   Springer, 2016, pp. 205–222.
  2. J. Wang, Z. Liu, L. Zhao, Z. Wu, C. Ma, S. Yu, H. Dai, Q. Yang, Y. Liu, S. Zhang et al., “Review of large vision models and visual prompt engineering,” Meta-Radiology, p. 100047, 2023.
  3. J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, “Chatgpt prompt patterns for improving code quality, refactoring, requirements elicitation, and software design,” arXiv preprint arXiv:2303.07839, 2023.
  4. Google, “Google palm,” https://poe.com/Google-PaLM.
  5. S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large language models,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  6. A. Jira, “User stories with examples and template,” https://www.atlassian.com/agile/project-management/user-stories.
  7. G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper, “Improving agile requirements: the quality user story framework and tool,” Requirements engineering, vol. 21, pp. 383–403, 2016.
  8. M. A. Kuhail and S. Lauesen, “User story quality in practice: A case study,” Software, vol. 1, no. 3, pp. 223–243, 2022.
  9. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  10. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  11. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
  12. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.
  13. A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling language modeling with pathways,” Journal of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.
  14. Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, H. He, A. Li, M. He, Z. Liu et al., “Summary of chatgpt-related research and perspective towards the future of large language models,” Meta-Radiology, p. 100017, 2023.
  15. C. K. Lo, “What is the impact of chatgpt on education? a rapid review of the literature,” Education Sciences, vol. 13, no. 4, p. 410, 2023.
  16. H.-Y. Hsu, K.-C. Hsu, S.-Y. Hou, C.-L. Wu, Y.-W. Hsieh, Y.-D. Cheng et al., “Examining real-world medication consultations and drug-herb interactions: chatgpt performance evaluation,” JMIR Medical Education, vol. 9, no. 1, p. e48433, 2023.
  17. S. Biswas, “Role of chatgpt in law: According to chatgpt,” Available at SSRN 4405398, 2023.
  18. J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  19. G. Poesia, O. Polozov, V. Le, A. Tiwari, G. Soares, C. Meek, and S. Gulwani, “Synchromesh: Reliable code generation from pre-trained language models,” arXiv preprint arXiv:2201.11227, 2022.
  20. S. Ugare, T. Suresh, H. Kang, S. Misailovic, and G. Singh, “Improving llm code generation with grammar augmentation,” arXiv preprint arXiv:2403.01632, 2024.
  21. A. Ahmad, M. Waseem, P. Liang, M. Fahmideh, M. S. Aktar, and T. Mikkonen, “Towards human-bot collaborative software architecting with chatgpt,” in Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering, 2023, pp. 279–285.
  22. R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk, and G. Bavota, “Towards automating code review activities,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).   IEEE, 2021, pp. 163–174.
  23. R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshyvanyk, and G. Bavota, “Using pre-trained models to boost code review automation,” in Proceedings of the 44th international conference on software engineering, 2022, pp. 2291–2302.
  24. J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large language models,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 824–24 837, 2022.
  25. Z. Xu, S. Jain, and M. Kankanhalli, “Hallucination is inevitable: An innate limitation of large language models,” arXiv preprint arXiv:2401.11817, 2024.
  26. J.-Y. Yao, K.-P. Ning, Z.-H. Liu, M.-N. Ning, and L. Yuan, “Llm lies: Hallucinations are not bugs, but features as adversarial examples,” arXiv preprint arXiv:2310.01469, 2023.
  27. Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung, “Survey of hallucination in natural language generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tajmilur Rahman (4 papers)
  2. Yuecai Zhu (2 papers)
Citations (4)
X Twitter Logo Streamline Icon: https://streamlinehq.com