Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
93 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
225 tokens/sec
2000 character limit reached

Temporal quantum eraser: Fusion gates with distinguishable photons (2404.01516v4)

Published 1 Apr 2024 in quant-ph

Abstract: Linear-optics gates, the enabling tool of photonic quantum information processing, depend on indistinguishable photons, as they harness quantum interference to achieve nonlinear operations. Traditionally, meeting this criterion involves generating pure identical photons, a task that remains a significant challenge in the field. Yet, the required indistinguishability is linked to the spatial exchange symmetry of the multiphoton wavefunction and does not strictly necessitate identical photons. Here, we show that the ideal operation of two-photon gates, particularly fusion gates, can be recovered from distinguishable photons by ensuring the exchange symmetry of the input photonic state. To this end, we introduce a temporal quantum eraser between a pair of modally-impure single-photon sources, which heralds the symmetry of the generated two-photon state. We demonstrate this mechanism in two relevant platforms: parametric photon pair generation and single-photon extraction by a single quantum emitter. The ability to lift the requirement for identical photons bears considerable potential in linear-optics quantum information processing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. S. L. Braunstein and A. Mann, Physical Review A 51, R1727 (1995).
  2. M. Varnava, D. E. Browne, and T. Rudolph, Physical Review Letters 100, 060502 (2008).
  3. D. E. Browne and T. Rudolph, Physical Review Letters 95, 010501 (2005).
  4. R. Raussendorf, D. E. Browne, and H. J. Briegel, Physical Review A 68, 022312 (2003).
  5. C. Sparrow, Quantum interference in universal linear optical devices for quantum computation and simulation, Ph.D. thesis, Imperial College London (2018).
  6. J. Marshall, Physical Review Letters 129, 213601 (2022).
  7. C.-K. Hong, Z.-Y. Ou, and L. Mandel, Physical Review Letters 59, 2044 (1987).
  8. K. Wang, Journal of Physics B: Atomic, Molecular and Optical Physics 39, R293 (2006).
  9. D. C. Burnham and D. L. Weinberg, Physical Review Letters 25, 84 (1970).
  10. T. Pittman, B. Jacobs, and J. Franson, Physical Review A 66, 042303 (2002).
  11. J. Gea-Banacloche and W. Wilson, Physical Review A 88, 033832 (2013).
  12. S. Rosenblum, A. Borne, and B. Dayan, Physical Review A 95, 033814 (2017).
  13. A. V. Gorshkov, R. Nath, and T. Pohl, Physical Review Letters 110, 153601 (2013).
  14. F. Ewert and P. van Loock, Physical Review Letters 113, 140403 (2014).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com