Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conformal Invariance of Clifford Monogenic Functions in the Indefinite Signature Case (2404.01398v1)

Published 1 Apr 2024 in math.CV

Abstract: We extend constructions of classical Clifford analysis to the case of indefinite non-degenerate quadratic forms. Clifford analogues of complex holomorphic functions - called monogenic functions - are defined by means of the Dirac operators that factor a certain wave operator. One of the fundamental features of quaternionic analysis is the invariance of quaternionic analogues of holomorphic function under conformal (or Mobius) transformations. A similar invariance property is known to hold in the context of Clifford algebras associated to positive definite quadratic forms. We generalize these results to the case of Clifford algebras associated to all non-degenerate quadratic forms. This result puts the indefinite signature case on the same footing as the classical positive definite case.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. M.F. Atiyah, R. Bott and A. Shapiro “Clifford Modules” In Topology 3, 1964, pp. 3–38
  2. L.V. Ahlfors “Möbius Transformations and Clifford Numbers” In Differential Geometry and Complex Analysis: A Volume Dedicated to the Memory of Harry Ernest Rauch Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 65–73 DOI: 10.1007/978-3-642-69828-6˙5
  3. F. Brackx, R. Delanghe and F. Sommen “Clifford Analysis”, Chapman & Hall/CRC research notes in mathematics series Pitman Advanced Pub. Program, 1982
  4. B. Bojarski “Conformally covariant differential operators” In Proceedings, XXth Iranian Mathematical Congress, 1989
  5. “Regular spinor valued mappings” In Seminarii di Geometria, Bologna 1984, 1986, pp. 7–22
  6. “The Spinorial Chessboard” Springer Berlin, Heidelberg, 1988 DOI: 10.1007/978-3-642-83407-3
  7. C.C. Chevalley “The Algebraic Theory of Spinors” Columbia University Press, 1954 DOI: doi:10.7312/chev93056
  8. J. Cnops “Vahlen Matrices for Non-Definite Metrics” In Clifford Algebras with Numeric and Symbolic Computations Boston, MA: Birkhäuser Boston, 1996, pp. 155–164 DOI: 10.1007/978-1-4615-8157-4˙10
  9. “Analysis of Dirac Systems and Computational Algebra”, Progress in Mathematical Physics Birkhäuser Boston, 2004
  10. R. Delanghe, F. Sommen and V. Souček “Clifford Algebra and Spinor-valued Functions: Disk”, Clifford Algebra and Spinor-valued Functions: A Function Theory for the Dirac Operator Kluwer Academic Publishers, 1992 DOI: 10.1007/978-94-011-2922-0
  11. D.J.H. Garling “Clifford Algebras: An Introduction”, London Mathematical Society Student Texts Cambridge University Press, 2011 DOI: 10.1017/CBO9780511972997
  12. “Clifford Algebras and Dirac Operators in Harmonic Analysis”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 1991
  13. S. Kobayashi “Transformation Groups in Differential Geometry” Springer My Copy UK
  14. T.Y. Lam “Introduction to Quadratic Forms over Fields” 67, Graduate Studies in Mathematics American Mathematical Society, 2005
  15. “Clifford analysis with indefinite signature” In Complex Analysis and Operator Theory 15.1, 2021 DOI: 10.1007/s11785-020-01062-7
  16. J. Maks “Clifford algebras and Möbius transformations” In Clifford Algebras and their Applications in Mathematical Physics: Proceedings of Second Workshop held at Montpellier, France, 1989 Dordrecht: Springer Netherlands, 1992, pp. 57–63 DOI: 10.1007/978-94-015-8090-8˙6
  17. J. Ryan “Complexified clifford analysis” In Complex Variables, Theory and Application: An International Journal 1.1 Taylor & Francis, 1982, pp. 119–149 DOI: 10.1080/17476938208814009
  18. J. Ryan “Properties of isolated singularities of some functions taking values in real Clifford algebras” In Mathematical Proceedings of the Cambridge Philosophical Society 95.2 Cambridge University Press, 1984, pp. 277–298 DOI: 10.1017/S0305004100061545
  19. J. Ryan “Conformally Covariant Operators in Clifford Analysis” In Z. Anal. Anwend. 14.4, 1995, pp. 677–704
  20. M. Schottenloher “A Mathematical Introduction to Conformal Field Theory”, Lecture Notes in Physics Springer, 2008 DOI: 10.1007/978-3-540-68628-6
  21. A. Sudbery “Quaternionic analysis” In Mathematical Proceedings of the Cambridge Philosophical Society 85.2 Cambridge University Press, 1979, pp. 199–225 DOI: 10.1017/S0305004100055638
  22. K.Th. Vahlen “Ueber Bewegungen und complexe Zahlen” In Mathematische Annalen 55, 1902, pp. 585–593

Summary

We haven't generated a summary for this paper yet.