Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unified Predefined-time Stability Conditions of Nonlinear Systems with Lyapunov Analysis (2404.01164v1)

Published 1 Apr 2024 in eess.SY and cs.SY

Abstract: This brief gives a set of unified Lyapunov stability conditions to guarantee the predefined-time/finite-time stability of a dynamical systems. The derived Lyapunov theorem for autonomous systems establishes equivalence with existing theorems on predefined-time/finite-time stability. The findings proposed herein develop a nonsingular sliding mode control framework for an Euler-Lagrange system to analyze its stability, and its upper bound for the settling time can be arbitrarily determined a priori through predefined time constant.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. S. P. Bhat and D. S. Bernstein, “Geometric homogeneity with applications to finite-time stability,” Math. Control Signal Syst., vol. 17, no. 2, pp. 101–127, 2005.
  2. V. Andrieu, L. Praly, and A. Astolfi, “Homogeneous approximation, recursive observer design, and output feedback,” SIAM J. Control Optim., vol. 47, no. 4, pp. 1814–1850, 2008.
  3. A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, 2012.
  4. J. D. Sánchez-Torres, D. Gómez-Gutiérrez, E. López, and A. G. Loukianov, “A class of predefined-time stable dynamical systems,” IMA J. Math. Control Inf., vol. 35, no. Supplement_1, pp. i1–i29, 2018.
  5. R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. D. Sánchez-Torres, and M. Defoort, “Enhancing the settling time estimation of a class of fixed-time stable systems,” Int. J. Robust Nonlinear Control, vol. 29, no. 12, pp. 4135–4148, 2019.
  6. E. Jiménez-Rodríguez, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, and A. G. Loukianov, “A Lyapunov-like characterization of predefined-time stability,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4922–4927, 2020.
  7. K. Li and Y. Li, “Adaptive predefined-time optimal tracking control for underactuated autonomous underwater vehicles,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1083–1085, 2023.
  8. Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159–2167, 2002.
  9. Z. Zuo, “Nonsingular fixed-time consensus tracking for second-order multi-agent networks,” Automatica, vol. 54, pp. 305–309, 2015.
  10. A.-M. Zou, K. D. Kumar, and A. H. de Ruiter, “Fixed-time attitude tracking control for rigid spacecraft,” Automatica, vol. 113, p. 108792, 2020.
  11. S. G. Jang and S. J. Yoo, “Predefined-time-synchronized backstepping control of strict-feedback nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 33, no. 13, pp. 7563–7582, 2023.
  12. B. Xiao, S. Zhao, Z. Chen, and L. Cao, “Prescribed convergence time control of spacecraft attitude dynamics with parametric uncertainty,” Nonlinear Dyn., vol. 111, no. 17, pp. 16 175–16 186, 2023.
  13. A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, E. Jiménez-Rodríguez, and A. G. Loukianov, “Predefined-time robust stabilization of robotic manipulators,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1033–1040, 2019.
  14. D. Ye, A.-M. Zou, and Z. Sun, “Predefined-time predefined-bounded attitude tracking control for rigid spacecraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 1, pp. 464–472, 2022.
  15. F. Wang, Y. Miao, C. Li, and I. Hwang, “Attitude control of rigid spacecraft with predefined-time stability,” J. Franklin Inst., vol. 357, no. 7, pp. 4212–4221, 2020.
  16. C. Xu, B. Wu, and Y. Zhang, “Distributed prescribed-time attitude cooperative control for multiple spacecraft,” Aerosp. Sci. Technol., vol. 113, p. 106699, 2021.
  17. C. Wu, J. Yan, J. Shen, X. Wu, and B. Xiao, “Predefined-time attitude stabilization of receiver aircraft in aerial refueling,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 10, pp. 3321–3325, 2021.
  18. C.-D. Liang, M.-F. Ge, Z.-W. Liu, G. Ling, and X.-W. Zhao, “A novel sliding surface design for predefined-time stabilization of Euler–Lagrange systems,” Nonlinear Dyn., vol. 106, no. 1, pp. 445–458, 2021.
  19. J. Ni, L. Liu, Y. Tang, and C. Liu, “Predefined-time consensus tracking of second-order multiagent systems,” IEEE Trans. Syst. Man Cybern, Syst., vol. 51, no. 4, pp. 2550–2560, 2021.
  20. S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000.
  21. W. Chen and L. C. Jiao, “Finite-time stability theorem of stochastic nonlinear systems,” Automatica, vol. 46, no. 12, pp. 2105–2108, 2010.
  22. Y. Shen and Y. Huang, “Uniformly observable and globally lipschitzian nonlinear systems admit global finite-time observers,” IEEE Trans. Autom. Control, vol. 54, no. 11, pp. 2621–2625, 2009.

Summary

We haven't generated a summary for this paper yet.