2000 character limit reached
Unified Predefined-time Stability Conditions of Nonlinear Systems with Lyapunov Analysis (2404.01164v1)
Published 1 Apr 2024 in eess.SY and cs.SY
Abstract: This brief gives a set of unified Lyapunov stability conditions to guarantee the predefined-time/finite-time stability of a dynamical systems. The derived Lyapunov theorem for autonomous systems establishes equivalence with existing theorems on predefined-time/finite-time stability. The findings proposed herein develop a nonsingular sliding mode control framework for an Euler-Lagrange system to analyze its stability, and its upper bound for the settling time can be arbitrarily determined a priori through predefined time constant.
- S. P. Bhat and D. S. Bernstein, “Geometric homogeneity with applications to finite-time stability,” Math. Control Signal Syst., vol. 17, no. 2, pp. 101–127, 2005.
- V. Andrieu, L. Praly, and A. Astolfi, “Homogeneous approximation, recursive observer design, and output feedback,” SIAM J. Control Optim., vol. 47, no. 4, pp. 1814–1850, 2008.
- A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, 2012.
- J. D. Sánchez-Torres, D. Gómez-Gutiérrez, E. López, and A. G. Loukianov, “A class of predefined-time stable dynamical systems,” IMA J. Math. Control Inf., vol. 35, no. Supplement_1, pp. i1–i29, 2018.
- R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. D. Sánchez-Torres, and M. Defoort, “Enhancing the settling time estimation of a class of fixed-time stable systems,” Int. J. Robust Nonlinear Control, vol. 29, no. 12, pp. 4135–4148, 2019.
- E. Jiménez-Rodríguez, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, and A. G. Loukianov, “A Lyapunov-like characterization of predefined-time stability,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4922–4927, 2020.
- K. Li and Y. Li, “Adaptive predefined-time optimal tracking control for underactuated autonomous underwater vehicles,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1083–1085, 2023.
- Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159–2167, 2002.
- Z. Zuo, “Nonsingular fixed-time consensus tracking for second-order multi-agent networks,” Automatica, vol. 54, pp. 305–309, 2015.
- A.-M. Zou, K. D. Kumar, and A. H. de Ruiter, “Fixed-time attitude tracking control for rigid spacecraft,” Automatica, vol. 113, p. 108792, 2020.
- S. G. Jang and S. J. Yoo, “Predefined-time-synchronized backstepping control of strict-feedback nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 33, no. 13, pp. 7563–7582, 2023.
- B. Xiao, S. Zhao, Z. Chen, and L. Cao, “Prescribed convergence time control of spacecraft attitude dynamics with parametric uncertainty,” Nonlinear Dyn., vol. 111, no. 17, pp. 16 175–16 186, 2023.
- A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, E. Jiménez-Rodríguez, and A. G. Loukianov, “Predefined-time robust stabilization of robotic manipulators,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1033–1040, 2019.
- D. Ye, A.-M. Zou, and Z. Sun, “Predefined-time predefined-bounded attitude tracking control for rigid spacecraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 1, pp. 464–472, 2022.
- F. Wang, Y. Miao, C. Li, and I. Hwang, “Attitude control of rigid spacecraft with predefined-time stability,” J. Franklin Inst., vol. 357, no. 7, pp. 4212–4221, 2020.
- C. Xu, B. Wu, and Y. Zhang, “Distributed prescribed-time attitude cooperative control for multiple spacecraft,” Aerosp. Sci. Technol., vol. 113, p. 106699, 2021.
- C. Wu, J. Yan, J. Shen, X. Wu, and B. Xiao, “Predefined-time attitude stabilization of receiver aircraft in aerial refueling,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 10, pp. 3321–3325, 2021.
- C.-D. Liang, M.-F. Ge, Z.-W. Liu, G. Ling, and X.-W. Zhao, “A novel sliding surface design for predefined-time stabilization of Euler–Lagrange systems,” Nonlinear Dyn., vol. 106, no. 1, pp. 445–458, 2021.
- J. Ni, L. Liu, Y. Tang, and C. Liu, “Predefined-time consensus tracking of second-order multiagent systems,” IEEE Trans. Syst. Man Cybern, Syst., vol. 51, no. 4, pp. 2550–2560, 2021.
- S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000.
- W. Chen and L. C. Jiao, “Finite-time stability theorem of stochastic nonlinear systems,” Automatica, vol. 46, no. 12, pp. 2105–2108, 2010.
- Y. Shen and Y. Huang, “Uniformly observable and globally lipschitzian nonlinear systems admit global finite-time observers,” IEEE Trans. Autom. Control, vol. 54, no. 11, pp. 2621–2625, 2009.