Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Sector-Based Algorithm for an Optimized Star-Galaxy Classification (2404.01049v1)

Published 1 Apr 2024 in astro-ph.IM and cs.LG

Abstract: This paper introduces a novel sector-based methodology for star-galaxy classification, leveraging the latest Sloan Digital Sky Survey data (SDSS-DR18). By strategically segmenting the sky into sectors aligned with SDSS observational patterns and employing a dedicated convolutional neural network (CNN), we achieve state-of-the-art performance for star galaxy classification. Our preliminary results demonstrate a promising pathway for efficient and precise astronomical analysis, especially in real-time observational settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (7)
  1. The eighteenth data release of the sloan digital sky surveys: Targeting and first spectra from sdss-v. The Astrophysical Journal Supplement Series, TBD(TBD):TBD, 2023. doi: 10.3847/1538-4365/acda98. URL https://doi.org/10.3847/1538-4365/acda98. arXiv:2301.07688 [astro-ph.GA].
  2. Deep residual networks model for star-galaxy classification. pp.  1–4, 07 2021. doi: 10.1109/ICOTEN52080.2021.9493433.
  3. Photometric identification of compact galaxies, stars, and quasars using multiple neural networks. Monthly Notices of the Royal Astronomical Society, 518(2):3123–3136, nov 2022. doi: 10.1093/mnras/stac3336. URL https://doi.org/10.1093%2Fmnras%2Fstac3336.
  4. Star galaxy image classification via convolutional neural networks. In 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), pp.  1156–1161, 2022. doi: 10.1109/ICOSEC54921.2022.9952065.
  5. Star–galaxy classification using deep convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 464(4):4463–4475, October 2016. ISSN 1365-2966. doi: 10.1093/mnras/stw2672. URL http://dx.doi.org/10.1093/mnras/stw2672.
  6. Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 450(1):666–680, 04 2015. ISSN 0035-8711. doi: 10.1093/mnras/stu1410. URL https://doi.org/10.1093/mnras/stu1410.
  7. The Sloan Digital Sky Survey. Sdss dr7 coverage. https://classic.sdss.org/dr7/coverage/404.php, 2008.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com