Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual Learning for Smart City: A Survey (2404.00983v1)

Published 1 Apr 2024 in cs.LG and cs.AI

Abstract: With the digitization of modern cities, large data volumes and powerful computational resources facilitate the rapid update of intelligent models deployed in smart cities. Continual learning (CL) is a novel machine learning paradigm that constantly updates models to adapt to changing environments, where the learning tasks, data, and distributions can vary over time. Our survey provides a comprehensive review of continual learning methods that are widely used in smart city development. The content consists of three parts: 1) Methodology-wise. We categorize a large number of basic CL methods and advanced CL frameworks in combination with other learning paradigms including graph learning, spatial-temporal learning, multi-modal learning, and federated learning. 2) Application-wise. We present numerous CL applications covering transportation, environment, public health, safety, networks, and associated datasets related to urban computing. 3) Challenges. We discuss current problems and challenges and envision several promising research directions. We believe this survey can help relevant researchers quickly familiarize themselves with the current state of continual learning research used in smart city development and direct them to future research trends.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (232)
  1. G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71, May 2019.
  2. G. M. van de Ven and A. S. Tolias, “Three scenarios for continual learning,” Apr. 2019.
  3. M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem,” in Psychology of Learning and Motivation.   Elsevier, 1989, vol. 24, pp. 109–165.
  4. S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL: Incremental Classifier and Representation Learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.   Honolulu, HI: IEEE, Jul. 2017, pp. 5533–5542.
  5. J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming catastrophic forgetting in neural networks,” Proceedings of the National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, Mar. 2017.
  6. Z. Li and D. Hoiem, “Learning without Forgetting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–2947, Dec. 2018.
  7. Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban Computing: Concepts, Methodologies, and Applications,” ACM Transactions on Intelligent Systems and Technology, vol. 5, no. 3, pp. 1–55, Oct. 2014.
  8. L. Wang, X. Zhang, H. Su, and J. Zhu, “A Comprehensive Survey of Continual Learning: Theory, Method and Application,” Jan. 2023.
  9. E. Belouadah, A. Popescu, and I. Kanellos, “A comprehensive study of class incremental learning algorithms for visual tasks,” Neural Networks, vol. 135, pp. 38–54, Mar. 2021.
  10. M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying forgetting in classification tasks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3366–3385, Jul. 2022.
  11. Z. Ke and B. Liu, “Continual Learning of Natural Language Processing Tasks: A Survey,” May 2023.
  12. D.-W. Zhou, Q.-W. Wang, Z.-H. Qi, H.-J. Ye, D.-C. Zhan, and Z. Liu, “Deep Class-Incremental Learning: A Survey,” Feb. 2023.
  13. Q. Yuan, S.-U. Guan, P. Ni, T. Luo, K. L. Man, P. Wong, and V. Chang, “Continual Graph Learning: A Survey,” Jan. 2023.
  14. F. G. Febrinanto, F. Xia, K. Moore, C. Thapa, and C. Aggarwal, “Graph Lifelong Learning: A Survey,” IEEE Computational Intelligence Magazine, vol. 18, no. 1, pp. 32–51, Feb. 2023.
  15. K. Shaheen, M. A. Hanif, O. Hasan, and M. Shafique, “Continual Learning for Real-World Autonomous Systems: Algorithms, Challenges and Frameworks,” Journal of Intelligent & Robotic Systems, vol. 105, no. 1, p. 9, Apr. 2022.
  16. T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-Rodríguez, “Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges,” Nov. 2019.
  17. P. Zhang and S. Kim, “A Survey on Incremental Update for Neural Recommender Systems,” Mar. 2023.
  18. J. Xiao, Z. Xiao, D. Wang, J. Bai, V. Havyarimana, and F. Zeng, “Short-term traffic volume prediction by ensemble learning in concept drifting environments,” Knowledge-Based Systems, vol. 164, pp. 213–225, Jan. 2019.
  19. F. Yu, J. Fang, B. Chen, and Y. Shao, “An Incremental Learning Based Convolutional Neural Network Model for Large-Scale and Short-Term Traffic Flow,” International Journal of Machine Learning and Computing, vol. 11, no. 2, pp. 143–151, Mar. 2021.
  20. Y. Shao, Y. Zhao, F. Yu, H. Zhu, and J. Fang, “The Traffic Flow Prediction Method Using the Incremental Learning-Based CNN-LTSM Model: The Solution of Mobile Application,” Mobile Information Systems, vol. 2021, p. e5579451, Jun. 2021.
  21. C. Lanza, E. Angelats, M. Miozzo, and P. Dini, “Urban Traffic Forecasting using Federated and Continual Learning,” in 2023 6th Conference on Cloud and Internet of Things (CIoT).   Lisbon, Portugal: IEEE, Mar. 2023, pp. 1–8.
  22. X. Chen, J. Wang, and K. Xie, “TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on Graph Neural Networks and Continual Learning,” in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21).   Montreal, Canada: International Joint Conferences on Artificial Intelligence Organization, Aug. 2021, pp. 3620–3626.
  23. B. Wang, Y. Zhang, J. Shi, P. Wang, X. Wang, L. Bai, and Y. Wang, “Knowledge Expansion and Consolidation for Continual Traffic Prediction With Expanding Graphs,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–12, 2023.
  24. A. Maipradit, Y. Moriyama, T. Okuro, M. Yoshida, N. Tachimori, S. Akiyama, H. Suwa, and K. Yasumoto, “PAVEMENT: Passing Vehicle Detection System with Autonomous Incremental Learning using Camera and Vibration Data,” in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, United Kingdom, Sep. 2022, pp. 1–7.
  25. T. Bandaragoda, D. De Silva, D. Kleyko, E. Osipov, U. Wiklund, and D. Alahakoon, “Trajectory clustering of road traffic in urban environments using incremental machine learning in combination with hyperdimensional computing,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019, pp. 1664–1670.
  26. G. Sun, T. Chen, Y. Su, and C. Li, “Internet Traffic Classification Based on Incremental Support Vector Machines,” Mobile Networks and Applications, vol. 23, no. 4, pp. 789–796, Aug. 2018.
  27. Z. Wu, R. Qiao, X. Liu, S. Gao, X. Ao, Z. He, and L. Xia, “CEDUP: Using incremental learning modeling to explore Spatio-temporal carbon emission distribution and unearthed patterns at the municipal level,” Resources, Conservation and Recycling, vol. 193, p. 106980, Jun. 2023.
  28. M. Das, M. Pratama, and S. K. Ghosh, “SARDINE: A Self-Adaptive Recurrent Deep Incremental Network Model for Spatio-Temporal Prediction of Remote Sensing Data,” ACM Transactions on Spatial Algorithms and Systems (TSAS), vol. 6, no. 3, pp. 16:1–16:26, Apr. 2020.
  29. X. Lu, X. Sun, W. Diao, Y. Feng, P. Wang, and K. Fu, “LIL: Lightweight Incremental Learning Approach Through Feature Transfer for Remote Sensing Image Scene Classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–20, 2022.
  30. X. Wang, L. Yao, X. Wang, H.-Y. Paik, and S. Wang, “Uncertainty Estimation With Neural Processes for Meta-Continual Learning,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11, 2022.
  31. E. Camargo, J. Aguilar, Y. Quintero, F. Rivas, and D. Ardila, “An incremental learning approach to prediction models of SEIRD variables in the context of the COVID-19 pandemic,” Health and Technology, vol. 12, no. 4, pp. 867–877, Jul. 2022.
  32. C. Hu, Y. Chen, X. Peng, H. Yu, C. Gao, and L. Hu, “A Novel Feature Incremental Learning Method for Sensor-Based Activity Recognition,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 6, pp. 1038–1050, Jun. 2019.
  33. S. Younan and M. Abu-Elkheir, “Deep Incremental Learning for Personalized Human Activity Recognition on Edge Devices,” IEEE Canadian Journal of Electrical and Computer Engineering, vol. 45, no. 3, pp. 215–221, 2022.
  34. V. Gupta, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff, “Continual Learning for Multivariate Time Series Tasks with Variable Input Dimensions,” in 2021 IEEE International Conference on Data Mining (ICDM), Dec. 2021, pp. 161–170.
  35. S.-Y. Yin, Y. Huang, T.-Y. Chang, S.-F. Chang, and V. S. Tseng, “Continual learning with attentive recurrent neural networks for temporal data classification,” Neural Networks, vol. 158, pp. 171–187, Jan. 2023.
  36. A. M. Eldhai, M. Hamdan, S. Khan, M. Hamzah, and M. N. Marsono, “Traffic Classification based on Incremental Learning Algorithms for the Software-Defined Networks,” in 2022 International Conference on Frontiers of Information Technology (FIT).   Islamabad, Pakistan: IEEE, Dec. 2022, pp. 338–343.
  37. Y. Cao, H. Peng, J. Wu, Y. Dou, J. Li, and P. S. Yu, “Knowledge-Preserving Incremental Social Event Detection via Heterogeneous GNNs,” in Proceedings of the Web Conference 2021, ser. WWW ’21.   New York, NY, USA: Association for Computing Machinery, Jun. 2021, pp. 3383–3395.
  38. P. Yu, H. Ji, and P. Natarajan, “Lifelong Event Detection with Knowledge Transfer,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.   Online and Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 5278–5290.
  39. H. Peng, R. Zhang, S. Li, Y. Cao, S. Pan, and P. S. Yu, “Reinforced, Incremental and Cross-Lingual Event Detection From Social Messages,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 980–998, Jan. 2023.
  40. Y. Xu, Y. Zhang, W. Guo, H. Guo, R. Tang, and M. Coates, “GraphSAIL: Graph Structure Aware Incremental Learning for Recommender Systems,” in Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20), ser. CIKM ’20.   Virtual Event, Ireland: Association for Computing Machinery, Oct. 2020, pp. 2861–2868.
  41. K. Ahrabian, Y. Xu, Y. Zhang, J. Wu, Y. Wang, and M. Coates, “Structure Aware Experience Replay for Incremental Learning in Graph-based Recommender Systems,” in Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21), ser. CIKM ’21.   Virtual Event, QLD, Australia: Association for Computing Machinery, Oct. 2021, pp. 2832–2836.
  42. S. Ding, F. Feng, X. He, Y. Liao, J. Shi, and Y. Zhang, “Causal Incremental Graph Convolution for Recommender System Retraining,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11, 2022.
  43. H. Amirat, N. Lagraa, P. Fournier-Viger, Y. Ouinten, M. L. Kherfi, and Y. Guellouma, “Incremental tree-based successive POI recommendation in location-based social networks,” Applied Intelligence, vol. 53, no. 7, pp. 7562–7598, Apr. 2023.
  44. Y. Wang, Y. Zhang, and M. Coates, “Graph Structure Aware Contrastive Knowledge Distillation for Incremental Learning in Recommender Systems,” in Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21), ser. CIKM ’21.   Virtual Event, QLD, Australia: Association for Computing Machinery, Oct. 2021, pp. 3518–3522.
  45. J. Xia, D. Li, H. Gu, J. Liu, T. Lu, and N. Gu, “FIRE: Fast Incremental Recommendation with Graph Signal Processing,” in Proceedings of the ACM Web Conference 2022.   Virtual Event, Lyon France: ACM, Apr. 2022, pp. 2360–2369.
  46. Z. Cui, X. Sun, L. Pan, S. Liu, and G. Xu, “Event-based incremental recommendation via factors mixed Hawkes process,” Information Sciences, vol. 639, p. 119007, Aug. 2023.
  47. H. Ma, Y. Sun, J. Li, M. Tomizuka, and C. Choi, “Continual Multi-Agent Interaction Behavior Prediction With Conditional Generative Memory,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8410–8417, Oct. 2021.
  48. Y. Lin, Z. Li, C. Gong, C. Lu, X. Wang, and J. Gong, “Continual Interactive Behavior Learning With Traffic Divergence Measurement: A Dynamic Gradient Scenario Memory Approach,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–18, 2023.
  49. L. Knoedler, C. Salmi, H. Zhu, B. Brito, and J. Alonso-Mora, “Improving Pedestrian Prediction Models With Self-Supervised Continual Learning,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4781–4788, Apr. 2022.
  50. B. Yang, F. Fan, R. Ni, J. Li, L. Kiong, and X. Liu, “Continual learning-based trajectory prediction with memory augmented networks,” Knowledge-Based Systems, vol. 258, p. 110022, Dec. 2022.
  51. Y. Wu, A. Bighashdel, G. Chen, G. Dubbelman, and P. Jancura, “Continual Pedestrian Trajectory Learning With Social Generative Replay,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 848–855, Feb. 2023.
  52. D. Gao, C. Wang, and S. Scherer, “AirLoop: Lifelong Loop Closure Detection,” in 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, May 2022, pp. 10 664–10 671.
  53. I. A. Lungu, S.-C. Liu, and T. Delbruck, “Fast event-driven incremental learning of hand symbols,” in 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Mar. 2019, pp. 25–28.
  54. A. Kanazawa, J. Kinugawa, and K. Kosuge, “Incremental Learning of Spatial-Temporal Features in Human Motion Patterns with Mixture Model for Planning Motion of a Collaborative Robot in Assembly Lines,” in 2019 International Conference on Robotics and Automation (ICRA).   Montreal, QC, Canada: IEEE, May 2019, pp. 7858–7864.
  55. R. S. Maharjan, “Continual Learning for Adaptive Affective Human-Robot Interaction,” in 2022 10th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW).   Nara, Japan: IEEE, Oct. 2022, pp. 1–5.
  56. Y. Cao, M. Jia, P. Ding, X. Zhao, and Y. Ding, “Incremental Learning for Remaining Useful Life Prediction via Temporal Cascade Broad Learning System With Newly Acquired Data,” IEEE Transactions on Industrial Informatics, vol. 19, no. 4, pp. 6234–6245, Apr. 2023.
  57. J. Gao, J. Li, H. Shan, Y. Qu, J. Z. Wang, F.-Y. Wang, and J. Zhang, “Forget less, count better: A domain-incremental self-distillation learning benchmark for lifelong crowd counting,” Frontiers of Information Technology & Electronic Engineering, vol. 24, no. 2, pp. 187–202, Feb. 2023.
  58. L. Zhang, G. Gao, and H. Zhang, “Spatial-Temporal Federated Learning for Lifelong Person Re-identification on Distributed Edges,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2023.
  59. X. Rui, Z. Li, Y. Cao, Z. Li, and W. Song, “DILRS: Domain-Incremental Learning for Semantic Segmentation in Multi-Source Remote Sensing Data,” Remote Sensing, vol. 15, no. 10, p. 2541, May 2023.
  60. M. Wang, D. Yu, W. He, P. Yue, and Z. Liang, “Domain-incremental learning for fire detection in space-air-ground integrated observation network,” International Journal of Applied Earth Observation and Geoinformation, vol. 118, p. 103279, Apr. 2023.
  61. P. Vijayaraghavan and D. Roy, “Lifelong Knowledge-Enriched Social Event Representation Learning,” in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume.   Online: Association for Computational Linguistics, Apr. 2021, pp. 3624–3635.
  62. H. Han, X. Fan, and F. Li, “Prototype Enhancement-Based Incremental Evolution Learning for Urban Garbage Classification,” IEEE Transactions on Artificial Intelligence, pp. 1–14, 2023.
  63. Xue Li, Lanshun Nie, Xiandong Si, and Dechen Zhan, “A Class Incremental Temporal-Spatial Model Based on Wireless Sensor Networks for Activity Recognition,” in Wireless Algorithms, Systems, and Applications. WASA 2020, ser. Lecture Notes in Computer Science, Dongxiao Yu, Falko Dressler, and Jiguo Yu, Eds.   Cham: Springer International Publishing, Sep. 2020, pp. 256–271.
  64. N. Veerakumar, J. L. Cremer, and M. Popov, “Dynamic Incremental Learning for real-time disturbance event classification,” International Journal of Electrical Power & Energy Systems, vol. 148, p. 108988, Jun. 2023.
  65. G. Bovenzi, L. Yang, A. Finamore, G. Aceto, D. Ciuonzo, A. Pescapè, and D. Rossi, “A First Look at Class Incremental Learning in Deep Learning Mobile Traffic Classification,” in Proceedings of the 5th Network Traffic Measurement and Analysis Conference, TMA 2021, Virtual, Sep. 2021.
  66. P. Cao, Y. Chen, J. Zhao, and T. Wang, “Incremental Event Detection via Knowledge Consolidation Networks,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).   Online: Association for Computational Linguistics, Nov. 2020, pp. 707–717.
  67. M. Liu, S. Chang, and L. Huang, “Incremental Prompting: Episodic Memory Prompt for Lifelong Event Detection,” in Proceedings of the 29th International Conference on Computational Linguistics.   Gyeongju, Republic of Korea: International Committee on Computational Linguistics, Oct. 2022, pp. 2157–2165.
  68. R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based sample selection for online continual learning,” in Advances in Neural Information Processing Systems, vol. 32.   Curran Associates, Inc., 2019.
  69. D. Nallaperuma, R. Nawaratne, T. Bandaragoda, A. Adikari, S. Nguyen, T. Kempitiya, D. De Silva, D. Alahakoon, and D. Pothuhera, “Online Incremental Machine Learning Platform for Big Data-Driven Smart Traffic Management,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 12, pp. 4679–4690, 2019.
  70. L. Zhang, G. Gao, and H. Zhang, “Towards Data-Efficient Continuous Learning for Edge Video Analytics via Smart Caching,” in Proceedings of the Twentieth ACM Conference on Embedded Networked Sensor Systems.   Boston Massachusetts: ACM, Nov. 2022, pp. 1136–1140.
  71. M. Tenzer, Z. Rasheed, and K. Shafique, “Learning citywide patterns of life from trajectory monitoring,” in Proceedings of the 30th International Conference on Advances in Geographic Information Systems, ser. SIGSPATIAL ’22.   New York, NY, USA: Association for Computing Machinery, Nov. 2022, pp. 1–12.
  72. J. Xu, J. Zhou, P.-N. Tan, X. Liu, and L. Luo, “Spatio-Temporal Multi-Task Learning via Tensor Decomposition,” IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 6, pp. 2764–2775, Jun. 2021.
  73. J. Farooq and M. A. Bazaz, “A novel adaptive deep learning model of Covid-19 with focus on mortality reduction strategies,” Chaos, Solitons & Fractals, vol. 138, p. 110148, Sep. 2020.
  74. J. Xiao, L. Chen, H. Chen, and X. Hong, “Baseline Model Training in Sensor-Based Human Activity Recognition: An Incremental Learning Approach,” IEEE Access, vol. 9, pp. 70 261–70 272, 2021.
  75. T. Hu, W. Wu, Q. Guo, H. Sun, L. Shi, and X. Shen, “Very short-term spatial and temporal wind power forecasting: A deep learning approach,” CSEE Journal of Power and Energy Systems, vol. 6, no. 2, pp. 434–443, Jun. 2020.
  76. M. Dubey, P. K. Srijith, and M. S. Desarkar, “Continual Learning for Time-to-Event Modeling,” in Continual Lifelong Learning Workshop at ACML 2022, 2022.
  77. L. Zhao, Y. Gao, J. Ye, F. Chen, Y. Ye, C.-T. Lu, and N. Ramakrishnan, “Spatio-Temporal Event Forecasting Using Incremental Multi-Source Feature Learning,” ACM Transactions on Knowledge Discovery from Data, vol. 16, no. 2, pp. 40:1–40:28, Sep. 2021.
  78. B. He, X. He, Y. Zhang, R. Tang, and C. Ma, “Dynamically Expandable Graph Convolution for Streaming Recommendation,” in Proceedings of the ACM Web Conference 2023.   Austin TX USA: ACM, Apr. 2023, pp. 1457–1467.
  79. J. Han, H. Liu, S. Liu, X. Chen, N. Tan, H. Chai, and H. Xiong, “iETA: A Robust and Scalable Incremental Learning Framework for Time-of-Arrival Estimation,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ser. KDD ’23.   New York, NY, USA: Association for Computing Machinery, Aug. 2023, pp. 4100–4111.
  80. F. Zenke, B. Poole, and S. Ganguli, “Continual Learning Through Synaptic Intelligence,” in Proceedings of the 34th International Conference on Machine Learning.   PMLR, Jul. 2017, pp. 3987–3995.
  81. R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory Aware Synapses: Learning what (not) to forget,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 139–154.
  82. S. Yan, J. Xie, and X. He, “DER: Dynamically Expandable Representation for Class Incremental Learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.   Nashville, TN, USA: IEEE, Jun. 2021, pp. 3013–3022.
  83. A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. S. Torr, “Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence,” in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds.   Cham: Springer International Publishing, 2018, vol. 11215, pp. 556–572.
  84. D. Lopez-Paz and M. Ranzato, “Gradient Episodic Memory for Continual Learning,” in Advances in Neural Information Processing Systems, 2017, p. 10.
  85. R. J. Hyndman and Y. Khandakar, “Automatic time series forecasting: The forecast package for R,” Journal of Statistical Software, vol. 27, no. 3, pp. 1–22, 2008.
  86. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, Aug. 2004.
  87. A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Frontiers in Neurorobotics, vol. 7, 2013.
  88. J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi, “DNN-based prediction model for spatio-temporal data,” in Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.   Burlingame California: ACM, Oct. 2016, pp. 1–4.
  89. Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-temporal graph modeling,” in Proceedings of the 28th International Joint Conference on Artificial Intelligence, ser. IJCAI’19.   Macao, China: AAAI Press, Aug. 2019, pp. 1907–1913.
  90. B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting,” in Proceedings of the 27th International Joint Conference on Artificial Intelligence, ser. IJCAI’18.   Stockholm, Sweden: AAAI Press, Jul. 2018, pp. 3634–3640.
  91. I. E. Olatunji and C.-H. Cheng, “Video Analytics for Visual Surveillance and Applications: An Overview and Survey,” in Machine Learning Paradigms: Applications of Learning and Analytics in Intelligent Systems, ser. Learning and Analytics in Intelligent Systems, G. A. Tsihrintzis, M. Virvou, E. Sakkopoulos, and L. C. Jain, Eds.   Cham: Springer International Publishing, 2019, pp. 475–515.
  92. M. Hu, Z. Luo, A. Pasdar, Y. C. Lee, Y. Zhou, and D. Wu, “Edge-Based Video Analytics: A Survey,” Mar. 2023.
  93. D. Tran, H. Wang, M. Feiszli, and L. Torresani, “Video Classification With Channel-Separated Convolutional Networks,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 5551–5560.
  94. Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A Survey,” Proceedings of the IEEE, vol. 111, no. 3, pp. 257–276, Mar. 2023.
  95. A. Kundu, V. Vineet, and V. Koltun, “Feature Space Optimization for Semantic Video Segmentation,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 3168–3175.
  96. H. Zhang, M. Shen, Y. Huang, Y. Wen, Y. Luo, G. Gao, and K. Guan, “A Serverless Cloud-Fog Platform for DNN-Based Video Analytics with Incremental Learning,” Feb. 2021.
  97. Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica, “Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers,” in 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).   Renton, WA: USENIX Association, 2022,apr, pp. 119–135.
  98. Y. Nan, S. Jiang, and M. Li, “Large-scale Video Analytics with Cloud–Edge Collaborative Continuous Learning,” ACM Transactions on Sensor Networks, vol. 20, no. 1, pp. 14:1–14:23, Oct. 2023.
  99. G. Wu and S. Gong, “Generalising without Forgetting for Lifelong Person Re-Identification,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, pp. 2889–2897, May 2021.
  100. N. Pu, W. Chen, Y. Liu, E. M. Bakker, and M. S. Lew, “Lifelong Person Re-Identification via Adaptive Knowledge Accumulation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 7901–7910.
  101. W. Ge, J. Du, A. Wu, Y. Xian, K. Yan, F. Huang, and W.-S. Zheng, “Lifelong Person Re-identification by Pseudo Task Knowledge Preservation,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, pp. 688–696, Jun. 2022.
  102. N. Pu, Z. Zhong, N. Sebe, and M. S. Lew, “A Memorizing and Generalizing Framework for Lifelong Person Re-Identification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 11, pp. 13 567–13 585, Nov. 2023.
  103. C. Yu, Y. Shi, Z. Liu, S. Gao, and J. Wang, “Lifelong Person Re-identification via Knowledge Refreshing and Consolidation,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 3, pp. 3295–3303, Jun. 2023.
  104. Y. Liu, L. Yao, B. Li, X. Wang, and C. Sammut, “Social Graph Transformer Networks for Pedestrian Trajectory Prediction in Complex Social Scenarios,” in Proceedings of the 31st ACM International Conference on Information & Knowledge Management.   Atlanta GA USA: ACM, Oct. 2022, pp. 1339–1349.
  105. Y. Lu, W. Wang, X. Hu, P. Xu, S. Zhou, and M. Cai, “Vehicle Trajectory Prediction in Connected Environments via Heterogeneous Context-Aware Graph Convolutional Networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 8, pp. 8452–8464, Aug. 2023.
  106. W. Wang, F. Xia, H. Nie, Z. Chen, Z. Gong, X. Kong, and W. Wei, “Vehicle Trajectory Clustering Based on Dynamic Representation Learning of Internet of Vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3567–3576, Jun. 2021.
  107. J. Bian, D. Tian, Y. Tang, and D. Tao, “A survey on trajectory clustering analysis,” Feb. 2018.
  108. A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras, “Human motion trajectory prediction: A survey,” The International Journal of Robotics Research, vol. 39, no. 8, pp. 895–935, Jul. 2020.
  109. Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang, and H. Chen, “A Survey on Trajectory-Prediction Methods for Autonomous Driving,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 652–674, Sep. 2022.
  110. G. Habibi, N. Jaipuria, and J. P. How, “SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020, pp. 1024–1025.
  111. D. Zhu, G. Zhai, Y. Di, F. Manhardt, H. Berkemeyer, T. Tran, N. Navab, F. Tombari, and B. Busam, “IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint Multi-Agent Trajectory Prediction,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2023, pp. 5507–5516.
  112. P. Bao, Z. Chen, J. Wang, D. Dai, and H. Zhao, “Lifelong Vehicle Trajectory Prediction Framework Based on Generative Replay,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 13 729–13 741, Dec. 2023.
  113. W. Mao, W. Wang, L. Jiao, S. Zhao, and A. Liu, “Modeling air quality prediction using a deep learning approach: Method optimization and evaluation,” Sustainable Cities and Society, vol. 65, p. 102567, Feb. 2021.
  114. X. Yi, J. Zhang, Z. Wang, T. Li, and Y. Zheng, “Deep Distributed Fusion Network for Air Quality Prediction,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.   London United Kingdom: ACM, Jul. 2018, pp. 965–973.
  115. A. Attaallah and R. Ahmad Khan, “SMOTEDNN: A Novel Model for Air Pollution Forecasting and AQI Classification,” Computers, Materials & Continua, vol. 71, no. 1, pp. 1403–1425, 2022.
  116. W.-L. Mao, W.-C. Chen, C.-T. Wang, and Y.-H. Lin, “Recycling waste classification using optimized convolutional neural network,” Resources, Conservation and Recycling, vol. 164, p. 105132, Jan. 2021.
  117. C. Wu and J. van de Weijer, “Density Map Distillation for Incremental Object Counting,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2023, pp. 2506–2515.
  118. N. Said, K. Ahmad, M. Riegler, K. Pogorelov, L. Hassan, N. Ahmad, and N. Conci, “Natural disasters detection in social media and satellite imagery: A survey,” Multimedia Tools and Applications, vol. 78, no. 22, pp. 31 267–31 302, Nov. 2019.
  119. E. Weber, N. Marzo, D. P. Papadopoulos, A. Biswas, A. Lapedriza, F. Ofli, M. Imran, and A. Torralba, “Detecting Natural Disasters, Damage, and Incidents in the Wild,” in Computer Vision – ECCV 2020, ser. Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.   Cham: Springer International Publishing, 2020, pp. 331–350.
  120. N. Churamani, S. Kalkan, and H. Gunes, “Continual Learning for Affective Robotics: Why, What and How?” in 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN).   Naples, Italy: IEEE, Aug. 2020, pp. 425–431.
  121. B. Irfan, A. Ramachandran, S. Spaulding, G. I. Parisi, and H. Gunes, “Lifelong Learning and Personalization in Long-Term Human-Robot Interaction (LEAP-HRI),” in 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI).   Sapporo, Japan: IEEE, Mar. 2022, pp. 1261–1264.
  122. L. Castri, S. Mghames, and N. Bellotto, “From Continual Learning to Causal Discovery in Robotics,” in Proceedings of The First AAAI Bridge Program on Continual Causality.   PMLR, Jun. 2023, pp. 85–91.
  123. H. Liu, H. Kou, C. Yan, and L. Qi, “Link prediction in paper citation network to construct paper correlation graph,” EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, p. 233, Dec. 2019.
  124. C. F. Luo, R. Bhambhoria, S. Dahan, and X. Zhu, “Prototype-Based Interpretability for Legal Citation Prediction,” in Findings of the Association for Computational Linguistics: ACL 2023.   Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 4883–4898.
  125. L. Sun, Z. Zhang, F. Wang, P. Ji, J. Wen, S. Su, and P. S. Yu, “Aligning Dynamic Social Networks: An Optimization Over Dynamic Graph Autoencoder,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 6, pp. 5597–5611, Jun. 2023.
  126. C. Li, S. Wang, Y. Wang, P. Yu, Y. Liang, Y. Liu, and Z. Li, “Adversarial Learning for Weakly-Supervised Social Network Alignment,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 996–1003, Jul. 2019.
  127. L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li, “T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 9, pp. 3848–3858, Sep. 2020.
  128. L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph convolutional recurrent network for traffic forecasting,” in Proceedings of the 34th International Conference on Neural Information Processing Systems, ser. NIPS’20.   Red Hook, NY, USA: Curran Associates Inc., Dec. 2020, pp. 17 804–17 815.
  129. S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 922–929, Jul. 2019.
  130. I. Chami, A. Wolf, D.-C. Juan, F. Sala, S. Ravi, and C. Ré, “Low-Dimensional Hyperbolic Knowledge Graph Embeddings,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.   Online: Association for Computational Linguistics, Jul. 2020, pp. 6901–6914.
  131. K. Zhou, W. X. Zhao, S. Bian, Y. Zhou, J.-R. Wen, and J. Yu, “Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ser. KDD ’20.   New York, NY, USA: Association for Computing Machinery, Aug. 2020, pp. 1006–1014.
  132. B. Xue and L. Zou, “Knowledge Graph Quality Management: A Comprehensive Survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 4969–4988, May 2023.
  133. W. Ju, Z. Fang, Y. Gu, Z. Liu, Q. Long, Z. Qiao, Y. Qin, J. Shen, F. Sun, Z. Xiao, J. Yang, J. Yuan, Y. Zhao, X. Luo, and M. Zhang, “A Comprehensive Survey on Deep Graph Representation Learning,” Apr. 2023.
  134. Y. Ma, Z. Guo, Z. Ren, J. Tang, and D. Yin, “Streaming Graph Neural Networks,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20), ser. SIGIR ’20.   Virtual Event, China: Association for Computing Machinery, Jul. 2020, pp. 719–728.
  135. Y. Han, S. Karunasekera, and C. Leckie, “Graph Neural Networks with Continual Learning for Fake News Detection from Social Media,” Aug. 2020.
  136. A. Daruna, M. Gupta, M. Sridharan, and S. Chernova, “Continual Learning of Knowledge Graph Embeddings,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1128–1135, Apr. 2021.
  137. P. Bielak, K. Tagowski, M. Falkiewicz, T. Kajdanowicz, and N. V. Chawla, “FILDNE: A Framework for Incremental Learning of Dynamic Networks Embeddings,” Knowledge-Based Systems, vol. 236, no. C, Aug. 2021.
  138. J. Wang, G. Song, Y. Wu, and L. Wang, “Streaming Graph Neural Networks via Continual Learning,” in Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20).   Virtual Event, Ireland: ACM, Oct. 2020, pp. 1515–1524.
  139. J. Wang, W. Zhu, G. Song, and L. Wang, “Streaming Graph Neural Networks with Generative Replay,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22), ser. KDD ’22.   Washington, DC, USA: Association for Computing Machinery, Aug. 2022, pp. 1878–1888.
  140. P. Wang, K. Liu, L. Jiang, X. Li, and Y. Fu, “Incremental Mobile User Profiling: Reinforcement Learning with Spatial Knowledge Graph for Modeling Event Streams,” in Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining USB Stick (KDD ’20), ser. KDD ’20.   Virtual Event: Association for Computing Machinery, Aug. 2020, pp. 853–861.
  141. X. Kou, Y. Lin, S. Liu, P. Li, J. Zhou, and Y. Zhang, “Disentangle-based Continual Graph Representation Learning,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).   Online: Association for Computational Linguistics, Nov. 2020, pp. 2961–2972.
  142. Z. Yuan, H. Liu, J. Liu, Y. Liu, Y. Yang, R. Hu, and H. Xiong, “Incremental Spatio-Temporal Graph Learning for Online Query-POI Matching,” in Proceedings of the Web Conference 2021 (WWW ’21), ser. WWW ’21.   Ljubljana, Slovenia.: Association for Computing Machinery, Jun. 2021, pp. 1586–1597.
  143. C. Wang, Y. Qiu, D. Gao, and S. Scherer, “Lifelong Graph Learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 13 719–13 728.
  144. F. Zhou and C. Cao, “Overcoming Catastrophic Forgetting in Graph Neural Networks with Experience Replay,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, May 2021, pp. 4714–4722.
  145. L. Galke, B. Franke, T. Zielke, and A. Scherp, “Lifelong Learning of Graph Neural Networks for Open-World Node Classification,” in 2021 International Joint Conference on Neural Networks (IJCNN).   Shenzhen, China: IEEE, Jul. 2021, pp. 1–8.
  146. X. Zhang, D. Song, and D. Tao, “Hierarchical Prototype Networks for Continual Graph Representation Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 4622–4636, Apr. 2023.
  147. J. Xia, D. Li, H. Gu, T. Lu, P. Zhang, and N. Gu, “Incremental Graph Convolutional Network for Collaborative Filtering,” in Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM ’21), ser. CIKM ’21.   Virtual Event, Australia: Association for Computing Machinery, Oct. 2021, pp. 2170–2179.
  148. B. Lu, X. Gan, L. Yang, W. Zhang, L. Fu, and X. Wang, “Geometer: Graph Few-Shot Class-Incremental Learning via Prototype Representation,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22).   Washington, DC, USA: ACM, Aug. 2022, pp. 1152–1161.
  149. Z. Tan, K. Ding, R. Guo, and H. Liu, “Graph Few-shot Class-incremental Learning,” in Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (WSDM ’22), ser. WSDM ’22.   Virtual Event, Tempe, AZ, USA: Association for Computing Machinery, Feb. 2022, pp. 987–996.
  150. J. Cai, X. Wang, C. Guan, Y. Tang, J. Xu, B. Zhong, and W. Zhu, “Multimodal Continual Graph Learning with Neural Architecture Search,” in Proceedings of the ACM Web Conference 2022 (WWW ’22), ser. WWW ’22.   Virtual Event, Lyon, France: Association for Computing Machinery, Apr. 2022, pp. 1292–1300.
  151. A. Carta, A. Cossu, F. Errica, and D. Bacciu, “Catastrophic Forgetting in Deep Graph Networks: An Introductory Benchmark for Graph Classification,” Mar. 2021.
  152. X. Zhang, D. Song, and D. Tao, “CGLB: Benchmark Tasks for Continual Graph Learning,” in 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks, Sep. 2022.
  153. D. G. Philps, “A Temporal Continual Learning Framework for Investment Decisions,” Unpublished Doctoral Thesis, City, University of London, 2020.
  154. T. Srinivasan, T.-Y. Chang, L. P. Alva, G. Chochlakis, M. Rostami, and J. Thomason, “CLiMB: A Continual Learning Benchmark for Vision-and-Language Tasks,” in Advances in Neural Information Processing Systems, vol. 35, 2022, pp. 29 440–29 453.
  155. K. Wang, L. Herranz, and J. van de Weijer, “Continual learning in cross-modal retrieval,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2021, pp. 3623–3633.
  156. Y. Gao, N. Fei, H. Lu, Z. Lu, H. Jiang, Y. Li, and Z. Cao, “BMU-MoCo: Bidirectional momentum update for continual video-language modeling,” in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35.   Curran Associates, Inc., 2022, pp. 22 699–22 712.
  157. X. Zhang, F. Zhang, and C. Xu, “VQACL: A Novel Visual Question Answering Continual Learning Setting,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2023, pp. 19 102–19 112.
  158. Z. Ni, L. Wei, S. Tang, Y. Zhuang, and Q. Tian, “Continual Vision-Language Representation Learning with Off-Diagonal Information,” in Proceedings of the 40th International Conference on Machine Learning.   PMLR, Jul. 2023, pp. 26 129–26 149.
  159. X. Chen, N. Zhang, J. Zhang, X. Wang, T. Wu, X. Chen, Y. Wang, and H. Chen, “Continual Multimodal Knowledge Graph Construction,” Aug. 2023.
  160. J. Yoon, W. Jeong, G. Lee, E. Yang, and S. J. Hwang, “Federated Continual Learning with Weighted Inter-client Transfer,” in Proceedings of the 38th International Conference on Machine Learning.   PMLR, Jul. 2021, pp. 12 073–12 086.
  161. Y. Ma, Z. Xie, J. Wang, K. Chen, and L. Shou, “Continual Federated Learning Based on Knowledge Distillation,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence.   Honolulu, Hawaii, USA: International Joint Conferences on Artificial Intelligence Organization, Jul. 2022, pp. 2182–2188.
  162. D. Shenaj, M. Toldo, A. Rigon, and P. Zanuttigh, “Asynchronous Federated Continual Learning,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2023, pp. 5055–5063.
  163. H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, pp. 11 106–11 115, May 2021.
  164. J. L. Alcaraz and N. Strodthoff, “Diffusion-based Time Series Imputation and Forecasting with Structured State Space Models,” Transactions on Machine Learning Research, Dec. 2022.
  165. H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang, J. Tong, and Q. Zhang, “Time-Series Anomaly Detection Service at Microsoft,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.   Anchorage AK USA: ACM, Jul. 2019, pp. 3009–3017.
  166. S. Lin, W. Lin, W. Wu, F. Zhao, R. Mo, and H. Zhang, “SegRNN: Segment Recurrent Neural Network for Long-Term Time Series Forecasting,” Aug. 2023.
  167. S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The Performance of LSTM and BiLSTM in Forecasting Time Series,” in 2019 IEEE International Conference on Big Data (Big Data), Dec. 2019, pp. 3285–3292.
  168. I. E. Livieris, E. Pintelas, and P. Pintelas, “A CNN–LSTM model for gold price time-series forecasting,” Neural Computing and Applications, vol. 32, no. 23, pp. 17 351–17 360, Dec. 2020.
  169. P. T. Yamak, L. Yujian, and P. K. Gadosey, “A Comparison between ARIMA, LSTM, and GRU for Time Series Forecasting,” in Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, ser. ACAI ’19.   New York, NY, USA: Association for Computing Machinery, Feb. 2020, pp. 49–55.
  170. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in Neural Information Processing Systems, vol. 30.   Curran Associates, Inc., 2017.
  171. Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Transformers in Time Series: A Survey,” May 2023.
  172. Y. Liu, T. Hu, H. Zhang, H. Wu, S. Wang, L. Ma, and M. Long, “iTransformer: Inverted Transformers Are Effective for Time Series Forecasting,” Oct. 2023.
  173. A. Das, W. Kong, A. Leach, S. Mathur, R. Sen, and R. Yu, “Long-term Forecasting with TiDE: Time-series Dense Encoder,” Aug. 2023.
  174. S.-A. Chen, C.-L. Li, N. Yoder, S. O. Arik, and T. Pfister, “TSMixer: An All-MLP Architecture for Time Series Forecasting,” Sep. 2023.
  175. V. Ekambaram, A. Jati, N. Nguyen, P. Sinthong, and J. Kalagnanam, “TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug. 2023, pp. 459–469.
  176. L. Zhao, S. Kong, and Y. Shen, “DoubleAdapt: A Meta-learning Approach to Incremental Learning for Stock Trend Forecasting,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ser. KDD ’23.   New York, NY, USA: Association for Computing Machinery, Aug. 2023, pp. 3492–3503.
  177. C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70, ser. ICML’17.   Sydney, NSW, Australia: JMLR.org, Aug. 2017, pp. 1126–1135.
  178. S. Wang, J. Cao, and P. S. Yu, “Deep Learning for Spatio-Temporal Data Mining: A Survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 8, pp. 3681–3700, Aug. 2022.
  179. G. Jin, Y. Liang, Y. Fang, J. Huang, J. Zhang, and Y. Zheng, “Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey,” Apr. 2023.
  180. D. Ramachandram and G. W. Taylor, “Deep Multimodal Learning: A Survey on Recent Advances and Trends,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 96–108, Nov. 2017.
  181. T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal Machine Learning: A Survey and Taxonomy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 2, pp. 423–443, Feb. 2019.
  182. P. P. Liang, A. Zadeh, and L.-P. Morency, “Foundations and Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions,” Feb. 2023.
  183. W. Guo, J. Wang, and S. Wang, “Deep Multimodal Representation Learning: A Survey,” IEEE Access, vol. 7, pp. 63 373–63 394, 2019.
  184. A. Nagrani, S. Yang, A. Arnab, A. Jansen, C. Schmid, and C. Sun, “Attention Bottlenecks for Multimodal Fusion,” in Advances in Neural Information Processing Systems, vol. 34.   Curran Associates, Inc., 2021, pp. 14 200–14 213.
  185. H. Luo, L. Ji, B. Shi, H. Huang, N. Duan, T. Li, J. Li, T. Bharti, and M. Zhou, “UniVL: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation,” Sep. 2020.
  186. H. R. Vaezi Joze, A. Shaban, M. L. Iuzzolino, and K. Koishida, “MMTM: Multimodal Transfer Module for CNN Fusion,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 13 286–13 296.
  187. S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh, “VQA: Visual Question Answering,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2425–2433.
  188. A. Suhr, S. Zhou, A. Zhang, I. Zhang, H. Bai, and Y. Artzi, “A Corpus for Reasoning About Natural Language Grounded in Photographs,” Jul. 2019.
  189. S. Goenka, Z. Zheng, A. Jaiswal, R. Chada, Y. Wu, V. Hedau, and P. Natarajan, “FashionVLP: Vision Language Transformer for Fashion Retrieval With Feedback,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 14 105–14 115.
  190. A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M. F. Moura, D. Parikh, and D. Batra, “Visual Dialog,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 326–335.
  191. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” arXiv:1810.04805 [cs], May 2019.
  192. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language Models are Few-Shot Learners,” Jul. 2020.
  193. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning Transferable Visual Models From Natural Language Supervision,” Feb. 2021.
  194. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 770–778.
  195. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” 2020.
  196. Y. Zhang, H. Jiang, Y. Miura, C. D. Manning, and C. P. Langlotz, “Contrastive Learning of Medical Visual Representations from Paired Images and Text,” 2020.
  197. X. Wang, G. Chen, G. Qian, P. Gao, X.-Y. Wei, Y. Wang, Y. Tian, and W. Gao, “Large-scale Multi-modal Pre-trained Models: A Comprehensive Survey,” Machine Intelligence Research, vol. 20, no. 4, pp. 447–482, Aug. 2023.
  198. C. Li, Z. Gan, Z. Yang, J. Yang, L. Li, L. Wang, and J. Gao, “Multimodal Foundation Models: From Specialists to General-Purpose Assistants,” Sep. 2023.
  199. S. Yin, C. Fu, S. Zhao, K. Li, X. Sun, T. Xu, and E. Chen, “A Survey on Multimodal Large Language Models,” Jun. 2023.
  200. J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated Learning: Strategies for Improving Communication Efficiency,” Oct. 2017.
  201. W. Huang, T. Li, D. Wang, S. Du, J. Zhang, and T. Huang, “Fairness and accuracy in horizontal federated learning,” Information Sciences, vol. 589, pp. 170–185, Apr. 2022.
  202. R. Al-Huthaifi, T. Li, W. Huang, J. Gu, and C. Li, “Federated learning in smart cities: Privacy and security survey,” Information Sciences, vol. 632, pp. 833–857, Jun. 2023.
  203. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-Efficient Learning of Deep Networks from Decentralized Data,” in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics.   PMLR, Apr. 2017, pp. 1273–1282.
  204. N. Shoham, T. Avidor, A. Keren, N. Israel, D. Benditkis, L. Mor-Yosef, and I. Zeitak, “Overcoming Forgetting in Federated Learning on Non-IID Data,” Oct. 2019.
  205. Y. Huang, C. Bert, S. Fischer, M. Schmidt, A. Dörfler, A. Maier, R. Fietkau, and F. Putz, “Continual Learning for Peer-to-Peer Federated Learning: A Study on Automated Brain Metastasis Identification,” Nov. 2022.
  206. OpenAI, “GPT-4 Technical Report,” Mar. 2023.
  207. A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel, “PaLM: Scaling Language Modeling with Pathways,” Oct. 2022.
  208. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and Efficient Foundation Language Models,” Feb. 2023.
  209. Z. Ke, H. Lin, Y. Shao, H. Xu, L. Shu, and B. Liu, “Continual Training of Language Models for Few-Shot Learning,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.   Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 10 205–10 216.
  210. J. Jang, S. Ye, S. Yang, J. Shin, J. Han, G. Kim, S. J. Choi, and M. Seo, “Towards Continual Knowledge Learning of Language Models,” in The Tenth International Conference on Learning Representations, Virtual Event, 2022-04-25/2022-04-29.
  211. Z. Ke, Y. Shao, H. Lin, T. Konishi, G. Kim, and B. Liu, “CONTINUAL PRE-TRAINING OF LANGUAGE MODELS,” in The Eleventh International Conference on Learning Representations, ICLR 2023.   OpenReview.net, 2023.
  212. A. Razdaibiedina, Y. Mao, R. Hou, M. Khabsa, M. Lewis, and A. Almahairi, “Progressive Prompts: Continual Learning for Language Models,” in The Eleventh International Conference on Learning Representations, {}ICLR{}, Kigali, Rwanda, 2023-05-01/2023-05-05.
  213. T. Wu, L. Luo, Y.-F. Li, S. Pan, T.-T. Vu, and G. Haffari, “Continual Learning for Large Language Models: A Survey,” Feb. 2024.
  214. J. Li, D. Li, S. Savarese, and S. Hoi, “BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models,” Jun. 2023.
  215. B. Li, Y. Zhang, L. Chen, J. Wang, F. Pu, J. Yang, C. Li, and Z. Liu, “MIMIC-IT: Multi-Modal In-Context Instruction Tuning,” Jun. 2023.
  216. Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang, “HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face,” May 2023.
  217. C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, and N. Duan, “Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models,” Mar. 2023.
  218. A. Awadalla, I. Gao, J. Gardner, J. Hessel, Y. Hanafy, W. Zhu, K. Marathe, Y. Bitton, S. Gadre, S. Sagawa, J. Jitsev, S. Kornblith, P. W. Koh, G. Ilharco, M. Wortsman, and L. Schmidt, “OpenFlamingo: An Open-Source Framework for Training Large Autoregressive Vision-Language Models,” Aug. 2023.
  219. Y. Huang, K. Xie, H. Bharadhwaj, and F. Shkurti, “Continual Model-Based Reinforcement Learning with Hypernetworks,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), May 2021, pp. 799–805.
  220. M. Wolczyk, M. Zajac, R. Pascanu, L. Kucinski, and P. Milos, “Continual World: A Robotic Benchmark For Continual Reinforcement Learning,” in Advances in Neural Information Processing Systems, vol. 34.   Curran Associates, Inc., 2021, pp. 28 496–28 510.
  221. K. Khetarpal, M. Riemer, I. Rish, and D. Precup, “Towards Continual Reinforcement Learning: A Review and Perspectives,” Journal of Artificial Intelligence Research, vol. 75, pp. 1401–1476, Dec. 2022.
  222. D. Abel, A. Barreto, B. V. Roy, D. Precup, H. van Hasselt, and S. Singh, “A Definition of Continual Reinforcement Learning,” in Thirty-Seventh Conference on Neural Information Processing Systems, Nov. 2023.
  223. B. Liu, S. Mazumder, E. Robertson, and S. Grigsby, “AI Autonomy: Self-initiated Open-world Continual Learning and Adaptation,” AI Magazine, vol. 44, no. 2, pp. 185–199, 2023.
  224. T.-D. Truong, H.-Q. Nguyen, B. Raj, and K. Luu, “Fairness Continual Learning Approach to Semantic Scene Understanding in Open-World Environments,” in Thirty-Seventh Conference on Neural Information Processing Systems, Nov. 2023.
  225. G. Kim, C. Xiao, T. Konishi, Z. Ke, and B. Liu, “Open-World Continual Learning: Unifying Novelty Detection and Continual Learning,” Apr. 2023.
  226. Y. Li, X. Yang, H. Wang, X. Wang, and T. Li, “Learning to Prompt Knowledge Transfer for Open-World Continual Learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 12, pp. 13 700–13 708, Mar. 2024.
  227. D. Li, N. Huang, Z. Wang, and H. Yang, “Personalized Federated Continual Learning for Task-incremental Biometrics,” IEEE Internet of Things Journal, pp. 1–1, 2023.
  228. V. De Caro, C. Gallicchio, and D. Bacciu, “Continual adaptation of federated reservoirs in pervasive environments,” Neurocomputing, vol. 556, p. 126638, Nov. 2023.
  229. X. Qi, Y. Zeng, T. Xie, P.-Y. Chen, R. Jia, P. Mittal, and P. Henderson, “Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!” in The Twelfth International Conference on Learning Representations, Oct. 2023.
  230. A. R. Javed, W. Ahmed, S. Pandya, P. K. R. Maddikunta, M. Alazab, and T. R. Gadekallu, “A Survey of Explainable Artificial Intelligence for Smart Cities,” Electronics, vol. 12, no. 4, p. 1020, Jan. 2023.
  231. K. Ahmad, M. Maabreh, M. Ghaly, K. Khan, J. Qadir, and A. Al-Fuqaha, “Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges,” Computer Science Review, vol. 43, p. 100452, Feb. 2022.
  232. D. Rymarczyk, J. van de Weijer, B. Zieliński, and B. Twardowski, “ICICLE: Interpretable Class Incremental Continual Learning,” Jul. 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.