Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta Episodic learning with Dynamic Task Sampling for CLIP-based Point Cloud Classification (2404.00857v1)

Published 1 Apr 2024 in cs.CV

Abstract: Point cloud classification refers to the process of assigning semantic labels or categories to individual points within a point cloud data structure. Recent works have explored the extension of pre-trained CLIP to 3D recognition. In this direction, CLIP-based point cloud models like PointCLIP, CLIP2Point have become state-of-the-art methods in the few-shot setup. Although these methods show promising performance for some classes like airplanes, desks, guitars, etc, the performance for some classes like the cup, flower pot, sink, nightstand, etc is still far from satisfactory. This is due to the fact that the adapter of CLIP-based models is trained using randomly sampled N-way K-shot data in the standard supervised learning setup. In this paper, we propose a novel meta-episodic learning framework for CLIP-based point cloud classification, addressing the challenges of limited training examples and sampling unknown classes. Additionally, we introduce dynamic task sampling within the episode based on performance memory. This sampling strategy effectively addresses the challenge of sampling unknown classes, ensuring that the model learns from a diverse range of classes and promotes the exploration of underrepresented categories. By dynamically updating the performance memory, we adaptively prioritize the sampling of classes based on their performance, enhancing the model's ability to handle challenging and real-world scenarios. Experiments show an average performance gain of 3-6\% on ModelNet40 and ScanobjectNN datasets in a few-shot setup.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in CVPR, 2017.
  2. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” NeurIPS, 2017.
  3. Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional neural network for point cloud analysis,” in CVPR, 2019.
  4. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” TOG, 2019.
  5. T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai, “Walk in the cloud: Learning curves for point clouds shape analysis,” in CVPR, 2021.
  6. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in ICML, 2021.
  7. R. Zhang, Z. Guo, W. Zhang, K. Li, X. Miao, B. Cui, Y. Qiao, P. Gao, and H. Li, “Pointclip: Point cloud understanding by clip,” in CVPR, 2022.
  8. T. Huang, B. Dong, Y. Yang, X. Huang, R. W. Lau, W. Ouyang, and W. Zuo, “Clip2point: Transfer clip to point cloud classification with image-depth pre-training,” arXiv, 2022.
  9. C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” ICML, 2017.
  10. X. Zhu, R. Zhang, B. He, Z. Zeng, S. Zhang, and P. Gao, “Pointclip v2: Adapting clip for powerful 3d open-world learning,” arXiv, 2022.
  11. X. Yan, H. Zhan, C. Zheng, J. Gao, R. Zhang, S. Cui, and Z. Li, “Let images give you more: Point cloud cross-modal training for shape analysis,” arXiv, 2022.
  12. A. Antoniou, H. Edwards, and A. Storkey, “How to train your maml,” ICLR, 2019.
  13. Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn quickly for few-shot learning,” arXiv, 2017.
  14. P. Pezeshkpour, Z. Zhao, and S. Singh, “On the utility of active instance selection for few-shot learning,” NeurIPS HAMLETS, 2020.
  15. S. Arnold, G. Dhillon, A. Ravichandran, and S. Soatto, “Uniform sampling over episode difficulty,” NeurIPS, 2021.
  16. D. Le, K. D. Nguyen, K. Nguyen, Q.-H. Tran, R. Nguyen, and B.-S. Hua, “Poodle: Improving few-shot learning via penalizing out-of-distribution samples,” NeurIPS, 2021.
  17. J. Xu and H. Le, “Generating representative samples for few-shot classification,” in CVPR, 2022.
  18. J. Xu, X. Luo, X. Pan, Y. Li, W. Pei, and Z. Xu, “Alleviating the sample selection bias in few-shot learning by removing projection to the centroid,” NeurIPS, 2022.
  19. A. Roy, A. Shah, K. Shah, P. Dhar, A. Cherian, and R. Chellappa, “Felmi: Few shot learning with hard mixup,” in NeurIPS, 2022.
  20. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep representation for volumetric shapes,” in CVPR, 2015.
  21. M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, “Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data,” in CVPR, 2019.
  22. N. Sedaghat, M. Zolfaghari, E. Amiri, and T. Brox, “Orientation-boosted voxel nets for 3d object recognition,” arXiv, 2016.
  23. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” NeurIPS, 2019.
  24. A. Nichol and J. Schulman, “Reptile: a scalable metalearning algorithm,” arXiv, vol. 2, no. 3, p. 4, 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shuvozit Ghose (10 papers)
  2. Yang Wang (672 papers)

Summary

We haven't generated a summary for this paper yet.