Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

Charge and spin current pumping by ultrafast demagnetization dynamics (2404.00779v3)

Published 31 Mar 2024 in cond-mat.mtrl-sci and cond-mat.mes-hall

Abstract: The surprising discovery of ultrafast demagnetization -- where electric field of femtosecond laser pulse couples to electrons of a ferromagnetic (FM) layer causing its magnetization vector {\em to shrink while not rotating}, is also assumed to be accompanied by generation of spin current in the direction orthogonal to electric field. However, understanding of the microscopic origin of such spin current and how efficiently it can be converted into charge current, as the putative source of THz radiation, is lacking despite nearly three decades of intense studies. Here we connect the standard pumping phenomena driven by microwave precession of magnetization vector replacing periodic time-dependence of magnetization precession with nonperiodic time-dependence of demagnetization, as obtained from experiments on ultrafast-light-driven Ni layer. Applying time-dependent nonequilibrium Green's functions, able to evolve such setup with arbitrary time dependence, reveals how demagnetization dynamics pumps both charge and spin currents in directions both parallel and orthogonal to electric field of laser pulse, even in the absence of spin-orbit coupling and thereby induced spin-to-charge conversion mechanisms. Although pumped currents follow $dM_z/dt$ in some setups, this becomes obscured when NM layers are disconnected and pumped currents start to reflect from FM boundaries (as is the case of experimental setups). Finally, we use the Jefimenko equations to compute electromagnetic radiation by charge current pumped in disconnected setup during demagnetization, or later during its slow recovery, unraveling that radiated electric field only in the former time interval exhibits features in 0.1--30 THz frequency range probed experimentally or explored for applications of spintronic THz emitters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. A. Suresh and B. K. Nikolić, Quantum classical approach to spin and charge pumping and the ensuing radiation in terahertz spintronics: Example of the ultrafast light-driven Weyl antiferromagnet Mn3⁢SnsubscriptMn3Sn\text{Mn}_{3}\text{Sn}Mn start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Sn, Phys. Rev. B 107, 174421 (2023).
  2. A. V. Kimel and M. Li, Writing magnetic memory with ultrashort light pulses, Nat. Rev. Mater. 4, 189 (2019).
  3. Z. Chen and L.-W. Wang, Role of initial magnetic disorder: A time-dependent ab initio study of ultrafast demagnetization mechanisms, Sci. Adv. 5, eaau800 (2019).
  4. A. Kefayati and B. K. Nikolić, Electromagnetic radiation from ultrafast-light-driven spintronic thz emitters: A time-dependent density functional theory plus Jefimenko equations approach, arXiv:2312.04476  (2023).
  5. S. Ghimire and D. A. Reis, High-harmonic generation from solids, Nat. Phys. 15, 10 (2018).
  6. Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Enhanced Gilbert damping in thin ferromagnetic films, Phys. Rev. Lett. 88, 117601 (2002).
  7. J. Varela-Manjarres and B. K. Nikolić, High-harmonic generation in spin and charge current pumping at ferromagnetic or antiferromagnetic resonance in the presence of spin-orbit coupling, J. Phys. Mater. 6, 045001 (2023).
  8. B. S. Popescu and A. Croy, Efficient auxiliary-mode approach for time-dependent nanoelectronics, New J. Phys. 18, 093044 (2016).
  9. R. Citro and M. Aidelsburger, Thouless pumping and topology, Nat. Rev. Phys. 5, 87 (2023).
  10. P. W. Brouwer, Scattering approach to parametric pumping, Phys. Rev. B 58, R10135 (1998).
  11. K. Ando, Dynamical generation of spin currents, Semicond. Sci. Technol. 29, 043002 (2014).
  12. K. Dolui, A. Suresh, and B. K. Nikolić, Spin pumping from antiferromagnetic insulator spin-orbit-proximitized by adjacent heavy metal: a first-principles Floquet-nonequilibrium Green function study, J. Phys. Mater. 5, 034002 (2022).
  13. K. Dolui, U. Bajpai, and B. K. Nikolić, Effective spin-mixing conductance of topological-insulator/ferromagnet and heavy-metal/ferromagnet spin-orbit-coupled interfaces: A first-principles Floquet-nonequilibrium Green function approach, Phys. Rev. Mater. 4, 121201 (2020).
  14. M. Moskalets, Scattering Matrix Approach to Non-Stationary Quantum Transport (Imeprial College Press, London, 2011).
  15. G. Schmidt, B. Das-Mohapatra, and E. T. Papaioannou, Charge dynamics in spintronic terahertz emitters, Phys. Rev. Appl. 19, L041001 (2023).
  16. O. D. Jefimenko, Electricity and Magnetism (Appleton Century-Crofts, New York, 1966).
  17. K. T. McDonald, The relation between expressions for time-dependent electromagnetic fields given by Jefimenko and by Panofsky and Phillips, Am. J. Phys. 65, 1074 (1997).
  18. B. K. Nikolić, L. P. Zârbo, and S. Souma, Imaging mesoscopic spin Hall flow: Spatial distribution of local spin currents and spin densities in and out of multiterminal spin-orbit coupled semiconductor nanostructures, Phys. Rev. B 73, 075303 (2006).
  19. R. L. Cooper and E. A. Uehling, Ferromagnetic resonance and spin diffusion in supermalloy, Phys. Rev. 164, 662 (1967).
  20. G. Stefanucci and R. Van Leeuwen, Nonequilibrium many-body theory of quantum systems: a modern introduction (Cambridge University Press, 2013).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube