Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Spontaneous charge-ordered state in Bernal-stacked bilayer graphene (2404.00692v1)

Published 31 Mar 2024 in cond-mat.mes-hall, cond-mat.mtrl-sci, and cond-mat.str-el

Abstract: We propose that a weakly spontaneous charge-ordered insulating state probably exists in Bernal-stacked bilayer graphene which can account for experimentally observed non-monotonic behavior of resistance as a function of the gated field, namely, the gap closes and reopens at a critical gated field. The underlying physics is demonstrated by a simple model on a corresponding lattice that contains the nearest intralayer and interlayer hoppings, electric field, and staggered potential between different sublattices. Combining density functional theory calculations with model analyses, we argue that the interlayer van der Waals interactions cooperating with ripples may be responsible for the staggered potential which induces a charge-ordered insulating state in the absence of the electric field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. Kostya S Novoselov, Edward McCann, SV Morozov, Vladimir I Fal’ko, MI Katsnelson, U Zeitler, D Jiang, F Schedin,  and AK Geim, “Unconventional quantum hall effect and berry’s phase of 2π𝜋\piitalic_π in bilayer graphene,” Nature physics 2, 177–180 (2006).
  2. Angela Kou, Benjamin E Feldman, Andrei J Levin, Bertrand I Halperin, Kenji Watanabe, Takashi Taniguchi,  and Amir Yacoby, “Electron-hole asymmetric integer and fractional quantum hall effect in bilayer graphene,” Science 345, 55–57 (2014).
  3. Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras,  and Pablo Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature 556, 43–50 (2018a).
  4. Xiaobo Lu, Petr Stepanov, Wei Yang, Ming Xie, Mohammed Ali Aamir, Ipsita Das, Carles Urgell, Kenji Watanabe, Takashi Taniguchi, Guangyu Zhang, et al., “Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene,” Nature 574, 653–657 (2019).
  5. Moon Jip Park, Youngkuk Kim, Gil Young Cho,  and SungBin Lee, “Higher-order topological insulator in twisted bilayer graphene,” Physical review letters 123, 216803 (2019).
  6. Cheol-Hwan Park and Steven G Louie, “Tunable excitons in biased bilayer graphene,” Nano letters 10, 426–431 (2010).
  7. Long Ju, Lei Wang, Ting Cao, Takashi Taniguchi, Kenji Watanabe, Steven G Louie, Farhan Rana, Jiwoong Park, James Hone, Feng Wang, et al., “Tunable excitons in bilayer graphene,” Science 358, 907–910 (2017).
  8. Mengqiao Sui, Guorui Chen, Liguo Ma, Wen-Yu Shan, Dai Tian, Kenji Watanabe, Takashi Taniguchi, Xiaofeng Jin, Wang Yao, Di Xiao, et al., “Gate-tunable topological valley transport in bilayer graphene,” Nature Physics 11, 1027–1031 (2015).
  9. Jeroen B Oostinga, Hubert B Heersche, Xinglan Liu, Alberto F Morpurgo,  and Lieven MK Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nature materials 7, 151–157 (2008).
  10. Thiti Taychatanapat and Pablo Jarillo-Herrero, “Electronic transport in dual-gated bilayer graphene at large displacement fields,” Physical review letters 105, 166601 (2010).
  11. Patrick Maher, Cory R Dean, Andrea F Young, Takashi Taniguchi, Kenji Watanabe, Kenneth L Shepard, James Hone,  and Philip Kim, “Evidence for a spin phase transition at charge neutrality in bilayer graphene,” Nature Physics 9, 154–158 (2013).
  12. Jing Li, Hailong Fu, Zhenxi Yin, Kenji Watanabe, Takashi Taniguchi,  and Jun Zhu, “Metallic phase and temperature dependence of the ν𝜈\nuitalic_ν= 0 quantum hall state in bilayer graphene,” Physical review letters 122, 097701 (2019).
  13. Taisuke Ohta, Aaron Bostwick, Thomas Seyller, Karsten Horn,  and Eli Rotenberg, “Controlling the electronic structure of bilayer graphene,” Science 313, 951–954 (2006).
  14. E.J. Mele, “Commensuration and interlayer coherence in twisted bilayer graphene,” Physical Review B 81, 161405(R) (2010).
  15. S Shallcross, S Sharma, E Kandelaki,  and O.A. Pankratov, “Electronic structure of turbostratic graphene,” Physical Review B 81, 165105 (2010).
  16. Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L Tomarken, Jason Y Luo, Javier D Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, et al., “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” Nature 556, 80–84 (2018b).
  17. Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C Martin, Alex Zettl, Michael F Crommie, Y Ron Shen,  and Feng Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459, 820–823 (2009).
  18. Kin Fai Mak, Chun Hung Lui, Jie Shan,  and Tony F Heinz, “Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy,” Physical review letters 102, 256405 (2009).
  19. Edward McCann, David SL Abergel,  and Vladimir I Fal’ko, “The low energy electronic band structure of bilayer graphene,” The European Physical Journal Special Topics 148, 91–103 (2007).
  20. Edward McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B 74, 161403(R) (2006).
  21. E.V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, Johan Nilsson, F. Guinea, A. K. Geim,  and A. H. Castro Neto, “Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99, 216802 (2007).
  22. Edward McCann and Mikito Koshino, “The electronic properties of bilayer graphene,” Reports on Progress in physics 76, 056503 (2013).
  23. R Thomas Weitz, MT Allen, BE Feldman, J Martin,  and A Yacoby, “Broken-symmetry states in doubly gated suspended bilayer graphene,” Science 330, 812–816 (2010).
  24. Wenzhong Bao, Jairo Velasco, Fan Zhang, Lei Jing, Brian Standley, Dmitry Smirnov, Marc Bockrath, Allan H MacDonald,  and Chun Ning Lau, “Evidence for a spontaneous gapped state in ultraclean bilayer graphene,” Proceedings of the National Academy of Sciences 109, 10802–10805 (2012).
  25. Jr Velasco, Lei Jing, Wenzhong Bao, Yongjin Lee, Philip Kratz, Vivek Aji, Marc Bockrath, CN Lau, Chandra Varma, Ryan Stillwell, et al., “Transport spectroscopy of symmetry-broken insulating states in bilayer graphene,” Nature nanotechnology 7, 156–160 (2012).
  26. Thomas C Lang, Zi Yang Meng, Michael M Scherer, Stefan Uebelacker, Fakher F Assaad, Alejandro Muramatsu, Carsten Honerkamp,  and Stefan Wessel, “Antiferromagnetism in the hubbard model on the bernal-stacked honeycomb bilayer,” Physical review letters 109, 126402 (2012).
  27. Jie Yuan, Dong-Hui Xu, Hao Wang, Yi Zhou, Jin-Hua Gao,  and Fu-Chun Zhang, “Possible half-metallic phase in bilayer graphene: Calculations based on mean-field theory applied to a two-layer hubbard model,” Physical Review B 88, 201109(R) (2013).
  28. Jeil Jung, Fan Zhang,  and Allan H MacDonald, “Lattice theory of pseudospin ferromagnetism in bilayer graphene: Competing interaction-induced quantum hall states,” Physical Review B 83, 115408 (2011).
  29. Yong Wang, Hao Wang, Jin-Hua Gao,  and Fu-Chun Zhang, “Layer antiferromagnetic state in bilayer graphene: A first-principles investigation,” Physical Review B 87, 195413 (2013).
  30. Michael M Scherer, Stefan Uebelacker,  and Carsten Honerkamp, “Instabilities of interacting electrons on the honeycomb bilayer,” Physical Review B 85, 235408 (2012).
  31. Maxim Kharitonov, ‘‘Canted antiferromagnetic phase of the ν𝜈\nuitalic_ν= 0 quantum hall state in bilayer graphene,” Physical review letters 109, 046803 (2012).
  32. Y Lemonik, I Aleiner,  and VI Fal’Ko, “Competing nematic, antiferromagnetic, and spin-flux orders in the ground state of bilayer graphene,” Physical review b 85, 245451 (2012).
  33. Rahul Nandkishore and Leonid Levitov, “Quantum anomalous hall state in bilayer graphene,” Physical Review B 82, 115124 (2010).
  34. Shouryya Ray and Lukas Janssen, “Gross-neveu-heisenberg criticality from competing nematic and antiferromagnetic orders in bilayer graphene,” Physical Review B 104, 045101 (2021).
  35. Jin-Rong Xu, Ze-Yi Song, Hai-Qing Lin,  and Yu-Zhong Zhang, “Gate-induced gap in bilayer graphene suppressed by coulomb repulsion,” Physical Review B 93, 035109 (2016).
  36. Vladimir Cvetkovic, Robert E. Throckmorton,  and Oskar Vafek, “Electronic multicriticality in bilayer graphene,” Phys. Rev. B 86, 075467 (2012).
  37. Robert E. Throckmorton and Oskar Vafek, “Fermions on bilayer graphene: Symmetry breaking for b=0𝑏0b=0italic_b = 0 and ν=0𝜈0\nu=0italic_ν = 0,” Phys. Rev. B 86, 115447 (2012).
  38. András L. Szabó and Bitan Roy, “Extended hubbard model in undoped and doped monolayer and bilayer graphene: Selection rules and organizing principle among competing orders,” Phys. Rev. B 103, 205135 (2021).
  39. Fan Zhang, Jeil Jung, Gregory A Fiete, Qian Niu,  and Allan H MacDonald, “Spontaneous quantum hall states in chirally stacked few-layer graphene systems,” Physical review letters 106, 156801 (2011).
  40. Elena Stolyarova, Kwang Taeg Rim, Sunmin Ryu, Janina Maultzsch, Philip Kim, Louis E Brus, Tony F Heinz, Mark S Hybertsen,  and George W Flynn, “High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface,” Proceedings of the National Academy of Sciences 104, 9209–9212 (2007).
  41. Jannik C Meyer, Andre K Geim, Mikhail I Katsnelson, Konstantin S Novoselov, Tim J Booth,  and Siegmar Roth, “The structure of suspended graphene sheets,” Nature 446, 60–63 (2007).
  42. Annalisa Fasolino, JH Los,  and Mikhail I Katsnelson, “Intrinsic ripples in graphene,” Nature materials 6, 858–861 (2007).
  43. Fan Zhang, Bhagawan Sahu, Hongki Min,  and Allan H MacDonald, “Band structure of abc-stacked graphene trilayers,” Physical Review B 82, 035409 (2010).
  44. Gui Gui, Jianxin Zhong,  and Zhenqiang Ma, “Electronic properties of rippled graphene,” in Journal of Physics: Conference Series, Vol. 402 (IOP Publishing, 2012) p. 012004.
  45. Jeil Jung and AH MacDonald, “Theory of the magnetic-field-induced insulator in neutral graphene sheets,” Physical Review B 80, 235417 (2009).
  46. Max Dion, Henrik Rydberg, Elsebeth Schröder, David C Langreth,  and Bengt I Lundqvist, “Van der waals density functional for general geometries,” Physical review letters 92, 246401 (2004).
  47. Alexandre Tkatchenko and Matthias Scheffler, “Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data,” Physical review letters 102, 073005 (2009).
  48. Valentino R Cooper, “Van der waals density functional: An appropriate exchange functional,” Physical Review B 81, 161104 (2010).
  49. Stefan Grimme, Jens Antony, Stephan Ehrlich,  and Helge Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu,” The Journal of chemical physics 132, 154104 (2010).
  50. Nicola Marzari, Arash A Mostofi, Jonathan R Yates, Ivo Souza,  and David Vanderbilt, “Maximally localized wannier functions: Theory and applications,” Reviews of Modern Physics 84, 1419 (2012).
  51. Arash A Mostofi, Jonathan R Yates, Young-Su Lee, Ivo Souza, David Vanderbilt,  and Nicola Marzari, “wannier90: A tool for obtaining maximally-localised wannier functions,” Computer physics communications 178, 685–699 (2008).
  52. Peter Blaha, Karlheinz Schwarz, Georg KH Madsen, Dieter Kvasnicka, Joachim Luitz, et al., “wien2k,” An augmented plane wave+ local orbitals program for calculating crystal properties 60 (2001).
  53. John P Perdew and Alex Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Physical Review B 23, 5048 (1981).
  54. Peter E Blöchl, Ove Jepsen,  and Ole Krogh Andersen, “Improved tetrahedron method for Brillouin-zone integrations,” Physical Review B 49, 16223 (1994).
  55. F Freitag, J Trbovic, M Weiss,  and C Schönenberger, “Spontaneously gapped ground state in suspended bilayer graphene,” Physical review letters 108, 076602 (2012).
  56. A Veligura, HJ Van Elferen, N Tombros, JC Maan, U Zeitler,  and BJ Van Wees, “Transport gap in suspended bilayer graphene at zero magnetic field,” Physical Review B 85, 155412 (2012).
  57. Aleksey N Kolmogorov and Vincent H Crespi, “Registry-dependent interlayer potential for graphitic systems,” Physical Review B 71, 235415 (2005).
  58. Irina V Lebedeva, Andrey A Knizhnik, Andrey M Popov, Yurii E Lozovik,  and Boris V Potapkin, “Interlayer interaction and relative vibrations of bilayer graphene,” Physical Chemistry Chemical Physics 13, 5687–5695 (2011).
  59. Rafael R Del Grande, Marcos G Menezes,  and Rodrigo B Capaz, “Layer breathing and shear modes in multilayer graphene: a dft-vdw study,” Journal of Physics: Condensed Matter 31, 295301 (2019).
  60. AS Mayorov, DC Elias, Marcin Mucha-Kruczynski, RV Gorbachev, T Tudorovskiy, A Zhukov, SV Morozov, MI Katsnelson, VI Fal’ko, AK Geim, et al., “Interaction-driven spectrum reconstruction in bilayer graphene,” Science 333, 860–863 (2011).
  61. Youngwoo Nam, Dong-Keun Ki, David Soler-Delgado,  and Alberto F Morpurgo, “A family of finite-temperature electronic phase transitions in graphene multilayers,” Science 362, 324–328 (2018).
  62. Yanping Liu, Wen Siang Lew,  and Zongwen Liu, “Observation of anomalous resistance behavior in bilayer graphene,” Nanoscale Research Letters 12, 1–8 (2017).
  63. Benjamin Butz, Christian Dolle, Florian Niekiel, Konstantin Weber, Daniel Waldmann, Heiko B Weber, Bernd Meyer,  and Erdmann Spiecker, “Dislocations in bilayer graphene,” Nature 505, 533–537 (2014).
  64. Vitor M. Pereira, R. M. Ribeiro, N. M. R. Peres,  and A. H. Castro Neto, “Distortion of the perfect lattice structure in bilayer graphene,” Phys. Rev. B 79, 045421 (2009).
  65. Hari P Dahal, Tim O Wehling, Kevin S Bedell, Jian-Xin Zhu,  and AV Balatsky, “Charge inhomogeneity in a single and bilayer graphene,” Physica B: Condensed Matter 405, 2241–2244 (2010).
  66. Johan Nilsson, AH Castro Neto, NMR Peres,  and F Guinea, “Electron-electron interactions and the phase diagram of a graphene bilayer,” Physical Review B 73, 214418 (2006).
  67. Antonino Flachi, “Strongly interacting fermions and phases of the Casimir effect,” Physical review letters 110, 060401 (2013).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube