Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LLM meets Vision-Language Models for Zero-Shot One-Class Classification (2404.00675v3)

Published 31 Mar 2024 in cs.CV and cs.AI

Abstract: We consider the problem of zero-shot one-class visual classification, extending traditional one-class classification to scenarios where only the label of the target class is available. This method aims to discriminate between positive and negative query samples without requiring examples from the target class. We propose a two-step solution that first queries LLMs for visually confusing objects and then relies on vision-language pre-trained models (e.g., CLIP) to perform classification. By adapting large-scale vision benchmarks, we demonstrate the ability of the proposed method to outperform adapted off-the-shelf alternatives in this setting. Namely, we propose a realistic benchmark where negative query samples are drawn from the same original dataset as positive ones, including a granularity-controlled version of iNaturalist, where negative samples are at a fixed distance in the taxonomy tree from the positive ones. To our knowledge, we are the first to demonstrate the ability to discriminate a single category from other semantically related ones using only its label.

Summary

We haven't generated a summary for this paper yet.