Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation (2404.00667v1)

Published 31 Mar 2024 in cs.CV

Abstract: Accurate segmentation of organelle instances from electron microscopy (EM) images plays an essential role in many neuroscience researches. However, practical scenarios usually suffer from high annotation costs, label scarcity, and large domain diversity. While unsupervised domain adaptation (UDA) that assumes no annotation effort on the target data is promising to alleviate these challenges, its performance on complicated segmentation tasks is still far from practical usage. To address these issues, we investigate a highly annotation-efficient weak supervision, which assumes only sparse center-points on a small subset of object instances in the target training images. To achieve accurate segmentation with partial point annotations, we introduce instance counting and center detection as auxiliary tasks and design a multitask learning framework to leverage correlations among the counting, detection, and segmentation, which are all tasks with partial or no supervision. Building upon the different domain-invariances of the three tasks, we enforce counting estimation with a novel soft consistency loss as a global prior for center detection, which further guides the per-pixel segmentation. To further compensate for annotation sparsity, we develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection. The experimental results highlight that, by simply using extremely weak annotation, e.g., 15\% sparse points, for model training, the proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart. The high robustness of our model shown in the validations and the low requirement of expert knowledge for sparse point annotation further improve the potential application value of our model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. J. Nunnari and A. Suomalainen, “Mitochondria: in sickness and in health,” Cell, vol. 148, no. 6, pp. 1145–1159, 2012.
  2. K. Neikirk, E.-G. Lopez, A. G. Marshall, A. Alghanem, E. Krystofiak, B. Kula, N. Smith, J. Shao, P. Katti, and A. O. Hinton Jr, “Call to action to properly utilize electron microscopy to measure organelles to monitor disease,” European Journal of Cell Biology, p. 151365, 2023.
  3. G. Pekkurnaz and X. Wang, “Mitochondrial heterogeneity and homeostasis through the lens of a neuron,” Nature metabolism, vol. 4, no. 7, pp. 802–812, 2022.
  4. J. Liu, J. Qi, X. Chen, Z. Li, B. Hong, H. Ma, G. Li, L. Shen, D. Liu, Y. Kong et al., “Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data,” Cell Reports, vol. 40, no. 5, 2022.
  5. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2015, pp. 234–241.
  6. E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 640–651, 2017.
  7. J. Peng and Y. Wang, “Medical image segmentation with limited supervision: a review of deep network models,” IEEE Access, vol. 9, pp. 36 827–36 851, 2021.
  8. M. Long, Y. Cao, and J. Wang, “Learning transferable features with deep adaptation networks,” in International Conference on Machine Learning, 2015, pp. 97–105.
  9. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, and H. Larochelle, “Domain-adversarial training of neural networks,” Journal of Machine Learning Research, vol. 17, no. 1, pp. 2096–2030, 2016.
  10. Y. Tsai, W. Hung, S. Schulter, K. Sohn, M. Yang, and M. Chandraker, “Learning to adapt structured output space for semantic segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7472–7481.
  11. J. Peng, J. Yi, and Z. Yuan, “Unsupervised mitochondria segmentation in em images via domain adaptive multi-task learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 6, pp. 1199–1209, 2020.
  12. S. Chen, X. Jia, J. He, Y. Shi, and J. Liu, “Semi-supervised domain adaptation based on dual-level domain mixing for semantic segmentation,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 11 013–11 022.
  13. F. Gao, M. Hu, M.-E. Zhong, S. Feng, X. Tian, X. Meng, Z. Huang, M. Lv, T. Song, X. Zhang et al., “Segmentation only uses sparse annotations: Unified weakly and semi-supervised learning in medical images,” Medical Image Analysis, vol. 80, p. 102515, 2022.
  14. X. Liu, Q. Yuan, Y. Gao, K. He, S. Wang, X. Tang, J. Tang, and D. Shen, “Weakly supervised segmentation of covid19 infection with scribble annotation on ct images,” Pattern recognition, vol. 122, p. 108341, 2022.
  15. L. Zhang, M. Shi, and Q. Chen, “Crowd counting via scale-adaptive convolutional neural network,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).   IEEE, 2018, pp. 1113–1121.
  16. D. Qiu, J. Yi, and J. Peng, “Wda-net: Weakly-supervised domain adaptive segmentation of electron microscopy,” in 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).   IEEE Computer Society, 2022, pp. 1132–1137.
  17. S. Gerhard, J. Funke, J. Martel, A. Cardona, and R. Fetter, “Segmented anisotropic sstem dataset of neural tissue,” 2013. [Online]. Available:
  18. A. Lucchi, Y. Li, and P. Fua, “Learning for structured prediction using approximate subgradient descent with working sets,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1987–1994.
  19. F. Xing and L. Yang, “Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review,” IEEE Reviews in Biomedical Engineering, vol. 9, pp. 234–263, 2016.
  20. S. E. A. Raza, L. Cheung, M. Shaban, S. Graham, D. Epstein, S. Pelengaris, M. Khan, and N. M. Rajpoot, “Micro-net: A unified model for segmentation of various objects in microscopy images,” Medical Image Analysis, vol. 52, pp. 160–173, 2019.
  21. J. Peng and Z. Luo, “Cs-net: Instance-aware cellular segmentation with hierarchical dimension-decomposed convolutions and slice-attentive learning,” Knowledge-Based Systems, vol. 232, p. 107485, 2021.
  22. J. Peng and Z. Yuan, “Mitochondria segmentation from em images via hierarchical structured contextual forest,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 8, pp. 2251–2259, 2020.
  23. Z. Yuan, X. Ma, J. Yi, Z. Luo, and J. Peng, “Hive-net: Centerline-aware hierarchical view-ensemble convolutional network for mitochondria segmentation in em images,” Computer Methods and Programs in Biomedicine, vol. 200, p. 105925, 2021.
  24. V. Casser, K. Kang, H. Pfister, and D. Haehn, “Fast mitochondria detection for connectomics,” in Medical Imaging with Deep Learning.   PMLR, 2020, pp. 111–120.
  25. C. Xiao, X. Chen, W. Li, L. Li, L. Wang, Q. Xie et al., “Automatic mitochondria segmentation for em data using a 3d supervised convolutional network,” Frontiers in Neuroanatomy, vol. 12, p. 92, 2018.
  26. J. Ahn and S. Kwak, “Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 12 275–12 284.
  27. Y. Xu, M. Gong, and K. Batmanghelich, “Box-adapt: Domain-adaptive medical image segmentation using bounding boxsupervision,” IJCAI Workshop on Weakly Supervised Representation Learning, 2021.
  28. R. Xie, Y. Yang, and Z. Chen, “Wits: weakly-supervised individual tooth segmentation model trained on box-level labels,” Pattern Recognition, p. 108974, 2022.
  29. R. Dorent, S. Joutard, J. Shapey, S. Bisdas, N. Kitchen, R. Bradford, S. Saeed, M. Modat, S. Ourselin, and T. Vercauteren, “Scribble-based domain adaptation via co-segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2020, pp. 479–489.
  30. K. Nishimura, C. Wang, K. Watanabe, D. Fei Elmer Ker, and R. Bise, “Weakly supervised cell instance segmentation under various conditions,” Medical Image Analysis, vol. 73, p. 102182, 2021.
  31. T. Zhao and Z. Yin, “Weakly supervised cell segmentation by point annotation,” IEEE Transactions on Medical Imaging, vol. 40, no. 10, pp. 2736 – 2747, 2020.
  32. S. Obikane and Y. Aoki, “Weakly supervised domain adaptation with point supervision in histopathological image segmentation,” in Asian Conference on Pattern Recognition.   Springer, 2019, pp. 127–140.
  33. A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei, “What’s the point: Semantic segmentation with point supervision,” in 14th European Conference on Computer Vision–ECCV 2016.   Springer, 2016, pp. 549–565.
  34. K. Tian, J. Zhang, H. Shen, K. Yan, P. Dong, J. Yao, S. Che, P. Luo, and X. Han, “Weakly-supervised nucleus segmentation based on point annotations: A coarse-to-fine self-stimulated learning strategy,” in 23rd International Conference on Medical Image Computing and Computer Assisted Intervention–MICCAI 2020.   Springer, 2020, pp. 299–308.
  35. H. Qu, P. Wu, Q. Huang, J. Yi, Z. Yan, K. Li, G. M. Riedlinger, S. De, S. Zhang, and D. N. Metaxas, “Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images,” IEEE Transactions on Medical Imaging, vol. 39, no. 11, pp. 3655–3666, 2020.
  36. Z. Chen, Z. Chen, J. Liu, Q. Zheng, Y. Zhu, Y. Zuo, Z. Wang, X. Guan, Y. Wang, and Y. Li, “Weakly supervised histopathology image segmentation with sparse point annotations,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1673–1685, 2021.
  37. D. Dong, G. Fu, J. Li, Y. Pei, and Y. Chen, “An unsupervised domain adaptation brain ct segmentation method across image modalities and diseases,” Expert Systems with Applications, vol. 207, p. 118016, 2022.
  38. M. Do, S. Jeon, P. Lee, K. Hong, Y.-s. Ma, and H. Byun, “Exploiting domain transferability for collaborative inter-level domain adaptive object detection,” Expert Systems with Applications, vol. 205, p. 117697, 2022.
  39. H. Gao, J. Guo, G. Wang, and Q. Zhang, “Cross-domain correlation distillation for unsupervised domain adaptation in nighttime semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9913–9923.
  40. M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li, “Deep reconstruction-classification networks for unsupervised domain adaptation,” in European Conference on Computer Vision.   Cham: Springer International Publishing, 2016, pp. 597–613.
  41. J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell, “Cycada: Cycle-consistent adversarial domain adaptation,” in International conference on machine learning.   Pmlr, 2018, pp. 1989–1998.
  42. J. Roels, J. Hennies, Y. Saeys, W. Philips, and A. Kreshuk, “Domain adaptive segmentation in volume electron microscopy imaging,” in International Symposium on Biomedical Imaging, 2019, pp. 1519–1522.
  43. W. Huang, X. Liu, Z. Cheng, Y. Zhang, and Z. Xiong, “Domain adaptive mitochondria segmentation via enforcing inter-section consistency,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2022, pp. 89–98.
  44. Y. Zou, Z. Yu, B. Kumar, and J. Wang, “Domain adaptation for semantic segmentation via class-balanced self-training,” in European Conference on Computer Vision, 2018, pp. 289–305.
  45. N. Araslanov and S. Roth, “Self-supervised augmentation consistency for adapting semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15 384–15 394.
  46. S. Paul, Y.-H. Tsai, S. Schulter, A. K. Roy-Chowdhury, and M. Chandraker, “Domain adaptive semantic segmentation using weak labels,” in European Conference on Computer Vision, 2020, pp. 571–587.
  47. A. Saporta, T.-H. Vu, M. Cord, and P. Pérez, “Esl: Entropy-guided self-supervised learning for domain adaptation in semantic segmentation,” arXiv preprint arXiv:2006.08658, 2020.
  48. D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks,” in Workshop on challenges in representation learning at International Conference on Machine Learning, vol. 3, no. 2, 2013, p. 896.
  49. Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single-image crowd counting via multi-column convolutional neural network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 589–597.
  50. S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, “Cutmix: Regularization strategy to train strong classifiers with localizable features,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 6022–6031.
  51. N. Kasthuri, K. J. Hayworth, D. R. Berger, R. L. Schalek, J. A. Conchello, S. Knowles-Barley et al., “Saturated reconstruction of a volume of neocortex,” Cell, vol. 162, no. 3, pp. 648–661, 2015.
  52. D. Wei, Z. Lin, D. Franco-Barranco, N. Wendt, X. Liu, W. Yin, X. Huang, A. Gupta, W.-D. Jang, X. Wang et al., “Mitoem dataset: Large-scale 3d mitochondria instance segmentation from em images,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2020, pp. 66–76.
  53. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” in International Conference on Computer Vision, 1995, pp. 694–699.
  54. N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, “A dataset and a technique for generalized nuclear segmentation for computational pathology,” IEEE Transactions on Medical Imaging, vol. 36, no. 7, pp. 1550–1560, 2017.
  55. A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 9404–9413.
  56. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2017.
  57. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision andPattern Recognition, 2016, pp. 770–778.

Summary

We haven't generated a summary for this paper yet.