Characterizing GSVD by singular value expansion of linear operators and its computation (2404.00655v1)
Abstract: The generalized singular value decomposition (GSVD) of a matrix pair ${A, L}$ with $A\in\mathbb{R}{m\times n}$ and $L\in\mathbb{R}{p\times n}$ generalizes the singular value decomposition (SVD) of a single matrix. In this paper, we provide a new understanding of GSVD from the viewpoint of SVD, based on which we propose a new iterative method for computing nontrivial GSVD components of a large-scale matrix pair. By introducing two linear operators $\mathcal{A}$ and $\mathcal{L}$ induced by ${A, L}$ between two finite-dimensional Hilbert spaces and applying the theory of singular value expansion (SVE) for linear compact operators, we show that the GSVD of ${A, L}$ is nothing but the SVEs of $\mathcal{A}$ and $\mathcal{L}$. This result characterizes completely the structure of GSVD for any matrix pair with the same number of columns. As a direct application of this result, we generalize the standard Golub-Kahan bidiagonalization (GKB) that is a basic routine for large-scale SVD computation such that the resulting generalized GKB (gGKB) process can be used to approximate nontrivial extreme GSVD components of ${A, L}$, which is named the gGKB_GSVD algorithm. We use the GSVD of ${A, L}$ to study several basic properties of gGKB and also provide preliminary results about convergence and accuracy of gGKB_GSVD for GSVD computation. Numerical experiments are presented to demonstrate the effectiveness of this method.
- Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proceedings of the National Academy of Sciences, 100(6):3351–3356, 2003.
- Thick-restarted joint Lanczos bidiagonalization for the GSVD. Journal of Computational and Applied Mathematics, 440:115506, 2024.
- M. Arioli. Generalized Golub–Kahan bidiagonalization and stopping criteria. SIAM Journal on Matrix Analysis and Applications, 34(2):571–592, 2013.
- Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM, 2000.
- Z. Bai and J. W. Demmel. Computing the generalized singular value decomposition. SIAM Journal on Scientific Computing, 14(6):1464–1486, 1993.
- S. J. Benbow. Solving generalized least-squares problems with LSQR. SIAM Journal on Matrix Analysis and Applications, 21(1):166–177, 1999.
- Application of generalized singular value decomposition to ionospheric tomography. In Annales Geophysicae, volume 22, pages 3437–3444. Copernicus Publications Göttingen, Germany, 2004.
- Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.
- N. A. Caruso and P. Novati. Convergence analysis of LSQR for compact operator equations. Linear Algebra Appl., 583:146–164, 2019.
- On a variational formulation of the generalized singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 18(4):1082–1092, 1997.
- J. Chung and A. K. Saibaba. Generalized hybrid iterative methods for large-scale Bayesian inverse problems. SIAM Journal on Scientific Computing, 39(5):S24–S46, 2017.
- Efficient generalized Golub–Kahan based methods for dynamic inverse problems. Inverse Problems, 34(2):024005, 2018.
- T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Trans. Math. Software (TOMS), 38(1):1–25, 2011.
- Generalized Golub-Kahan bidiagonalization for nonsymmetric saddle point systems. arXiv preprint arXiv:2310.06952, 2023.
- A. Edelman and Y. Wang. The GSVD: Where are the ellipses?, matrix trigonometry, and more. SIAM Journal on Matrix Analysis and Applications, 41(4):1826–1856, 2020.
- Regularization of Inverse Problems. Kluwer Academic Publishers, 2000.
- Canonical correlations and generalized SVD: applications and new algorithms. Journal of computational and applied mathematics, 27(1-2):37–52, 1989.
- G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2):205–224, 1965.
- Matrix Computations. The Johns Hopkins University Press, Baltimore, 4th edition, 2013.
- M. Hochstenbach. A Jacobi–Davidson type method for the generalized singular value problem. Linear Algebra and its Applications, 431(3-4):471–487, 2009.
- M. E. Hochstenbach and Y. Notay. The Jacobi–Davidson method. GAMM-Mitteilungen, 29(2):368–382, 2006.
- Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 25(1):165–179, 2003.
- J. Huang and Z. Jia. On choices of formulations of computing the generalized singular value decomposition of a large matrix pair. Numerical Algorithms, 87:689–718, 2021.
- J. Huang and Z. Jia. Two harmonic Jacobi–Davidson methods for computing a partial generalized singular value decomposition of a large matrix pair. Journal of Scientific Computing, 93(2):41, 2022.
- Z. Jia and H. Li. The joint bidiagonalization process with partial reorthogonalization. Numer. Algor., 88(2):965–992, 2021.
- Z. Jia and H. Li. The joint bidiagonalization method for large GSVD computations in finite precision. SIAM Journal on Matrix Analysis and Applications, 44(1):382–407, 2023.
- B. Kågström. The generalized singular value decomposition and the general (A−λB𝐴𝜆𝐵A-\lambda Bitalic_A - italic_λ italic_B)-problem. BIT Numerical Mathematics, 24:568–583, 1984.
- R. Kress. Linear Integral Equations. Springer New York, NY, 2013.
- Applications of the generalized singular-value decomposition method on the eigenproblem using the incomplete boundary element formulation. Journal of Sound and Vibration, 235(5):813–845, 2000.
- R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. DAIMI Report Series, (537), 1998.
- H. Li. A preconditioned Krylov subspace method for linear inverse problems with general-form Tikhonov regularization. arXiv preprint arXiv:2308.06577, 2023.
- H. Li. Subspace projection regularization for large-scale Bayesian linear inverse problems. arXiv preprint arXiv:2310.18618, 2023.
- H. Li. The joint bidiagonalization of a matrix pair with inaccurate inner iterations. SIAM Journal on Matrix Analysis and Applications, 45(1):232–259, 2024.
- Scalable iterative data-adaptive RKHS regularization. arXiv preprint arXiv:2401.00656, 2024.
- R.-C. Li. Bounds on perturbations of generalized singular values and of associated subspaces. SIAM J. Matrix Anal. Appl., 14(1):195–234, 1993.
- A contour integral-based algorithm for computing generalized singular values. arXiv preprint arXiv:2401.00121, 2023.
- Real-time super-resolution sound source localization for robots. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 694–699. IEEE, 2012.
- C. C. Paige. A note on a result of Sun Ji-Guang: Sensitivity of the CS and GSV decompositions. SIAM J. Numer. Anal., 21(1):186–191, 1984.
- C. C. Paige. The general linear model and the generalized singular value decomposition. Linear Algebra and its applications, 70:269–284, 1985.
- C. C. Paige. Computing the generalized singular value decomposition. SIAM Journal on Scientific and Statistical Computing, 7(4):1126–1146, 1986.
- Towards a generalized singular value decomposition. SIAM J. Numer. Anal., 18(3):398–405, 1981.
- LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software, 8:43–71, 1982.
- C. H. Park and H. Park. A relationship between linear discriminant analysis and the generalized minimum squared error solution. SIAM Journal on Matrix Analysis and Applications, 27(2):474–492, 2005.
- P. T. Peter Tang and E. Polizzi. FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM Journal on Matrix Analysis and Applications, 35(2):354–390, 2014.
- A. Refahi Sheikhani and S. Kordrostami. New iterative methods for generalized singular-value problems. Mathematical Sciences, 11(4):257–265, 2017.
- Y. Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.
- T. Sakurai and H. Sugiura. A projection method for generalized eigenvalue problems using numerical integration. Journal of computational and applied mathematics, 159(1):119–128, 2003.
- J. M. Speiser and C. Van Loan. Signal processing computations using the generalized singular value decomposition. In Real-Time Signal Processing VII, volume 495, pages 47–57. SPIE, 1984.
- J.-G. Sun. Perturbation analysis for the generalized singular value problem. SIAM J. Numer. Anal., 20(3):611–625, 1983.
- J.-g. Sun. Perturbation theorems for generalized singular values. J. Comput. Math., 1(3):233–242, 1983.
- B. D. Sutton. Stable computation of the CS decomposition: Simultaneous bidiagonalization. SIAM Journal on Matrix Analysis and Applications, 33(1):1–21, 2012.
- C. F. Van Loan. Generalizing the singular value decomposition. SIAM J. Numer. Anal., 13(1):76–83, 1976.
- C. F. Van Loan. Computing the CS and the generalized singular value decompositions. Numer. Math., 46(4):479–491, 1985.
- H. Zha. Computing the generalized singular values/vectors of large sparse or structured matrix pairs. Numer. Math., 72(3):391–417, 1996.