Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing GSVD by singular value expansion of linear operators and its computation (2404.00655v1)

Published 31 Mar 2024 in math.NA and cs.NA

Abstract: The generalized singular value decomposition (GSVD) of a matrix pair ${A, L}$ with $A\in\mathbb{R}{m\times n}$ and $L\in\mathbb{R}{p\times n}$ generalizes the singular value decomposition (SVD) of a single matrix. In this paper, we provide a new understanding of GSVD from the viewpoint of SVD, based on which we propose a new iterative method for computing nontrivial GSVD components of a large-scale matrix pair. By introducing two linear operators $\mathcal{A}$ and $\mathcal{L}$ induced by ${A, L}$ between two finite-dimensional Hilbert spaces and applying the theory of singular value expansion (SVE) for linear compact operators, we show that the GSVD of ${A, L}$ is nothing but the SVEs of $\mathcal{A}$ and $\mathcal{L}$. This result characterizes completely the structure of GSVD for any matrix pair with the same number of columns. As a direct application of this result, we generalize the standard Golub-Kahan bidiagonalization (GKB) that is a basic routine for large-scale SVD computation such that the resulting generalized GKB (gGKB) process can be used to approximate nontrivial extreme GSVD components of ${A, L}$, which is named the gGKB_GSVD algorithm. We use the GSVD of ${A, L}$ to study several basic properties of gGKB and also provide preliminary results about convergence and accuracy of gGKB_GSVD for GSVD computation. Numerical experiments are presented to demonstrate the effectiveness of this method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proceedings of the National Academy of Sciences, 100(6):3351–3356, 2003.
  2. Thick-restarted joint Lanczos bidiagonalization for the GSVD. Journal of Computational and Applied Mathematics, 440:115506, 2024.
  3. M. Arioli. Generalized Golub–Kahan bidiagonalization and stopping criteria. SIAM Journal on Matrix Analysis and Applications, 34(2):571–592, 2013.
  4. Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM, 2000.
  5. Z. Bai and J. W. Demmel. Computing the generalized singular value decomposition. SIAM Journal on Scientific Computing, 14(6):1464–1486, 1993.
  6. S. J. Benbow. Solving generalized least-squares problems with LSQR. SIAM Journal on Matrix Analysis and Applications, 21(1):166–177, 1999.
  7. Application of generalized singular value decomposition to ionospheric tomography. In Annales Geophysicae, volume 22, pages 3437–3444. Copernicus Publications Göttingen, Germany, 2004.
  8. Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.
  9. N. A. Caruso and P. Novati. Convergence analysis of LSQR for compact operator equations. Linear Algebra Appl., 583:146–164, 2019.
  10. On a variational formulation of the generalized singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 18(4):1082–1092, 1997.
  11. J. Chung and A. K. Saibaba. Generalized hybrid iterative methods for large-scale Bayesian inverse problems. SIAM Journal on Scientific Computing, 39(5):S24–S46, 2017.
  12. Efficient generalized Golub–Kahan based methods for dynamic inverse problems. Inverse Problems, 34(2):024005, 2018.
  13. T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Trans. Math. Software (TOMS), 38(1):1–25, 2011.
  14. Generalized Golub-Kahan bidiagonalization for nonsymmetric saddle point systems. arXiv preprint arXiv:2310.06952, 2023.
  15. A. Edelman and Y. Wang. The GSVD: Where are the ellipses?, matrix trigonometry, and more. SIAM Journal on Matrix Analysis and Applications, 41(4):1826–1856, 2020.
  16. Regularization of Inverse Problems. Kluwer Academic Publishers, 2000.
  17. Canonical correlations and generalized SVD: applications and new algorithms. Journal of computational and applied mathematics, 27(1-2):37–52, 1989.
  18. G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2):205–224, 1965.
  19. Matrix Computations. The Johns Hopkins University Press, Baltimore, 4th edition, 2013.
  20. M. Hochstenbach. A Jacobi–Davidson type method for the generalized singular value problem. Linear Algebra and its Applications, 431(3-4):471–487, 2009.
  21. M. E. Hochstenbach and Y. Notay. The Jacobi–Davidson method. GAMM-Mitteilungen, 29(2):368–382, 2006.
  22. Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 25(1):165–179, 2003.
  23. J. Huang and Z. Jia. On choices of formulations of computing the generalized singular value decomposition of a large matrix pair. Numerical Algorithms, 87:689–718, 2021.
  24. J. Huang and Z. Jia. Two harmonic Jacobi–Davidson methods for computing a partial generalized singular value decomposition of a large matrix pair. Journal of Scientific Computing, 93(2):41, 2022.
  25. Z. Jia and H. Li. The joint bidiagonalization process with partial reorthogonalization. Numer. Algor., 88(2):965–992, 2021.
  26. Z. Jia and H. Li. The joint bidiagonalization method for large GSVD computations in finite precision. SIAM Journal on Matrix Analysis and Applications, 44(1):382–407, 2023.
  27. B. Kågström. The generalized singular value decomposition and the general (A−λ⁢B𝐴𝜆𝐵A-\lambda Bitalic_A - italic_λ italic_B)-problem. BIT Numerical Mathematics, 24:568–583, 1984.
  28. R. Kress. Linear Integral Equations. Springer New York, NY, 2013.
  29. Applications of the generalized singular-value decomposition method on the eigenproblem using the incomplete boundary element formulation. Journal of Sound and Vibration, 235(5):813–845, 2000.
  30. R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. DAIMI Report Series, (537), 1998.
  31. H. Li. A preconditioned Krylov subspace method for linear inverse problems with general-form Tikhonov regularization. arXiv preprint arXiv:2308.06577, 2023.
  32. H. Li. Subspace projection regularization for large-scale Bayesian linear inverse problems. arXiv preprint arXiv:2310.18618, 2023.
  33. H. Li. The joint bidiagonalization of a matrix pair with inaccurate inner iterations. SIAM Journal on Matrix Analysis and Applications, 45(1):232–259, 2024.
  34. Scalable iterative data-adaptive RKHS regularization. arXiv preprint arXiv:2401.00656, 2024.
  35. R.-C. Li. Bounds on perturbations of generalized singular values and of associated subspaces. SIAM J. Matrix Anal. Appl., 14(1):195–234, 1993.
  36. A contour integral-based algorithm for computing generalized singular values. arXiv preprint arXiv:2401.00121, 2023.
  37. Real-time super-resolution sound source localization for robots. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 694–699. IEEE, 2012.
  38. C. C. Paige. A note on a result of Sun Ji-Guang: Sensitivity of the CS and GSV decompositions. SIAM J. Numer. Anal., 21(1):186–191, 1984.
  39. C. C. Paige. The general linear model and the generalized singular value decomposition. Linear Algebra and its applications, 70:269–284, 1985.
  40. C. C. Paige. Computing the generalized singular value decomposition. SIAM Journal on Scientific and Statistical Computing, 7(4):1126–1146, 1986.
  41. Towards a generalized singular value decomposition. SIAM J. Numer. Anal., 18(3):398–405, 1981.
  42. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software, 8:43–71, 1982.
  43. C. H. Park and H. Park. A relationship between linear discriminant analysis and the generalized minimum squared error solution. SIAM Journal on Matrix Analysis and Applications, 27(2):474–492, 2005.
  44. P. T. Peter Tang and E. Polizzi. FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM Journal on Matrix Analysis and Applications, 35(2):354–390, 2014.
  45. A. Refahi Sheikhani and S. Kordrostami. New iterative methods for generalized singular-value problems. Mathematical Sciences, 11(4):257–265, 2017.
  46. Y. Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.
  47. T. Sakurai and H. Sugiura. A projection method for generalized eigenvalue problems using numerical integration. Journal of computational and applied mathematics, 159(1):119–128, 2003.
  48. J. M. Speiser and C. Van Loan. Signal processing computations using the generalized singular value decomposition. In Real-Time Signal Processing VII, volume 495, pages 47–57. SPIE, 1984.
  49. J.-G. Sun. Perturbation analysis for the generalized singular value problem. SIAM J. Numer. Anal., 20(3):611–625, 1983.
  50. J.-g. Sun. Perturbation theorems for generalized singular values. J. Comput. Math., 1(3):233–242, 1983.
  51. B. D. Sutton. Stable computation of the CS decomposition: Simultaneous bidiagonalization. SIAM Journal on Matrix Analysis and Applications, 33(1):1–21, 2012.
  52. C. F. Van Loan. Generalizing the singular value decomposition. SIAM J. Numer. Anal., 13(1):76–83, 1976.
  53. C. F. Van Loan. Computing the CS and the generalized singular value decompositions. Numer. Math., 46(4):479–491, 1985.
  54. H. Zha. Computing the generalized singular values/vectors of large sparse or structured matrix pairs. Numer. Math., 72(3):391–417, 1996.
Citations (2)

Summary

We haven't generated a summary for this paper yet.