Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample Complexity of Chance Constrained Optimization in Dynamic Environment (2404.00608v1)

Published 31 Mar 2024 in math.OC, cs.SY, and eess.SY

Abstract: We study the scenario approach for solving chance-constrained optimization in time-coupled dynamic environments. Scenario generation methods approximate the true feasible region from scenarios generated independently and identically from the actual distribution. In this paper, we consider this problem in a dynamic environment, where the scenarios are assumed to be drawn sequentially from an unknown and time-varying distribution. Such dynamic environments are driven by changing environmental conditions that could be found in many real-world applications such as energy systems. We couple the time-varying distributions using the Wasserstein metric between the sequence of scenario-generating distributions and the actual chance-constrained distribution. Our main results are bounds on the number of samples essential for ensuring the ex-post risk in chance-constrained optimization problems when the underlying feasible set is convex or non-convex. Finally, our results are illustrated on multiple numerical experiments for both types of feasible sets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. A. Charnes, W. W. Cooper, and G. H. Symonds, “Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil,” Management science, vol. 4, no. 3, pp. 235–263, 1958.
  2. X. Geng and L. Xie, “Data-driven decision making in power systems with probabilistic guarantees: Theory and applications of chance-constrained optimization,” Annual reviews in control, vol. 47, pp. 341–363, 2019.
  3. X. Geng, L. Xie, and M. S. Modarresi, “Computing essential sets for convex and non-convex scenario problems: Theory and application,” IEEE Transactions on Control of Network Systems, 2021.
  4. A. Nemirovski, “On safe tractable approximations of chance constraints,” European Journal of Operational Research, vol. 219, no. 3, pp. 707–718, 2012.
  5. D. Bertsimas, D. Den Hertog, and J. Pauphilet, “Probabilistic guarantees in robust optimization,” SIAM Journal on Optimization, vol. 31, no. 4, pp. 2893–2920, 2021.
  6. J. Luedtke and S. Ahmed, “A sample approximation approach for optimization with probabilistic constraints,” SIAM Journal on Optimization, vol. 19, no. 2, pp. 674–699, 2008.
  7. J. Luedtke, S. Ahmed, and G. L. Nemhauser, “An integer programming approach for linear programs with probabilistic constraints,” Mathematical programming, vol. 122, no. 2, pp. 247–272, 2010.
  8. G. C. Calafiore and M. C. Campi, “The scenario approach to robust control design,” IEEE Transactions on automatic control, vol. 51, no. 5, pp. 742–753, 2006.
  9. M. C. Campi and S. Garatti, “The exact feasibility of randomized solutions of uncertain convex programs,” SIAM Journal on Optimization, vol. 19, no. 3, pp. 1211–1230, 2008.
  10. M. C. Campi, S. Garatti, and F. A. Ramponi, “A general scenario theory for nonconvex optimization and decision making,” IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4067–4078, 2018.
  11. Y. Gu and L. Xie, “Stochastic look-ahead economic dispatch with variable generation resources,” IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 17–29, 2016.
  12. L. Xie, Y. Gu, X. Zhu, and M. G. Genton, “Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 511–520, 2013.
  13. G. Ortiz-Jiménez, A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard, “Optimism in the face of adversity: Understanding and improving deep learning through adversarial robustness,” Proceedings of the IEEE, vol. 109, no. 5, pp. 635–659, 2021.
  14. D. Bienstock, M. Jeong, A. Shukla, and S.-Y. Yun, “Robust streaming pca,” Advances in Neural Information Processing Systems, vol. 35, pp. 4231–4243, 2022.
  15. S. Yan, F. Parise, and E. Bitar, “Data-driven approximations of chance constrained programs in nonstationary environments,” IEEE Control Systems Letters, 2022.
  16. M. C. Campi, A. Carè, and S. Garatti, “The scenario approach: A tool at the service of data-driven decision making,” Annual Reviews in Control, vol. 52, pp. 1–17, 2021.
  17. L. Xie, D.-H. Choi, S. Kar, and H. V. Poor, “Fully distributed state estimation for wide-area monitoring systems,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1154–1169, 2012.
  18. G. Welch, G. Bishop et al., “An introduction to the kalman filter,” 1995.
  19. E. Erdoğan and G. Iyengar, “Ambiguous chance constrained problems and robust optimization,” Mathematical Programming, vol. 107, no. 1, pp. 37–61, 2006.
  20. S.-H. Tseng, E. Bitar, and A. Tang, “Random convex approximations of ambiguous chance constrained programs,” in 2016 IEEE 55th Conference on Decision and Control (CDC).   IEEE, 2016, pp. 6210–6215.
  21. G. C. Calafiore, “Random convex programs,” SIAM Journal on Optimization, vol. 20, no. 6, pp. 3427–3464, 2010.
  22. F.-Y. Wang, “Coupling and applications,” in Stochastic Analysis and Applications to Finance: Essays in Honour of Jia-An Yan.   World Scientific, 2012, pp. 411–424.
  23. ——, “Randomized algorithms for robust controller synthesis using statistical learning theory,” Automatica, vol. 37, no. 10, pp. 1515–1528, 2001.
  24. G. C. Calafiore, D. Lyons, and L. Fagiano, “On mixed-integer random convex programs,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).   IEEE, 2012, pp. 3508–3513.
  25. P. M. Esfahani, T. Sutter, and J. Lygeros, “Performance bounds for the scenario approach and an extension to a class of non-convex programs,” IEEE Transactions on Automatic Control, vol. 60, no. 1, pp. 46–58, 2014.
  26. E. W. Weisstein, “Normal distribution,” https://mathworld. wolfram. com/, 2002.
  27. L. V. Kantorovich, “On the translocation of masses,” Journal of mathematical sciences, vol. 133, no. 4, pp. 1381–1382, 2006.
Citations (1)

Summary

We haven't generated a summary for this paper yet.