Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The slope of v-function and Waldschmidt constant (2404.00493v2)

Published 30 Mar 2024 in math.AC and math.CO

Abstract: In this paper, we study the asymptotic behaviour of the v-number of a Noetherian graded filtration $\mathcal{I}= {I_{[k]}}{k\geq 0}$ of a Noetherian $\mathbb{N}$-graded domain $R$. Recently, it is shown that $\mathrm{v}(I{[k]})$ is periodically linear in $k$ for $k \gg 0$. We show that all these linear functions have the same slope, i.e. $\displaystyle \lim_{k \rightarrow \infty}\frac{\mathrm{v}(I_{[k]})}{k}$ exists, which is equal to $\displaystyle \lim_{k \rightarrow \infty}\frac{\alpha(I_{[k]})}{k}$, where $\alpha(I)$ denotes the minimum degree of a non-zero element in $I$. In particular, for any Noetherian symbolic filtration $\mathcal{I}= {I{(k)}}_{k\geq 0}$ of $R$, it follows that $\displaystyle \lim_{k \rightarrow \infty}\frac{\mathrm{v}(I{(k)})}{k}=\hat{\alpha}(I)$, the Waldschmidt constant of $I$. Next, for a non-equigenerated square-free monomial ideal $I$, we prove that $\mathrm{v}(I{(k)}) \leq \mathrm{reg}(R/I{(k)})$ for $k\gg 0$. Also, for an ideal $I$ having the symbolic strong persistence property, we give a linear upper bound on $\mathrm{v}(I{(k)})$. As an application, we derive some criteria for a square-free monomial ideal $I$ to satisfy $\mathrm{v}(I{(k)})\leq \mathrm{reg}(R/I{(k)})$ for all $k\geq 1$, and provide several examples in support. In addition, for any simple graph $G$, we establish that $\mathrm{v}(J(G){(k)}) \leq \mathrm{reg}(R/J(G){(k)})$ for all $k \geq 1$, and $\mathrm{v}(J(G){(k)}) = \mathrm{reg}(R/J(G){(k)})=\alpha(J(G){(k)})-1$ for all $k\geq 1$ if and only if $G$ is a Cohen-Macaulay very-well covered graph, where $J(G)$ is the cover ideal of $G$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.