Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Denoising Monte Carlo Renders with Diffusion Models (2404.00491v2)

Published 30 Mar 2024 in cs.CV

Abstract: Physically-based renderings contain Monte-Carlo noise, with variance that increases as the number of rays per pixel decreases. This noise, while zero-mean for good modern renderers, can have heavy tails (most notably, for scenes containing specular or refractive objects). Learned methods for restoring low fidelity renders are highly developed, because suppressing render noise means one can save compute and use fast renders with few rays per pixel. We demonstrate that a diffusion model can denoise low fidelity renders successfully. Furthermore, our method can be conditioned on a variety of natural render information, and this conditioning helps performance. Quantitative experiments show that our method is competitive with SOTA across a range of sampling rates. Qualitative examination of the reconstructions suggests that the image prior applied by a diffusion method strongly favors reconstructions that are like real images -- so have straight shadow boundaries, curved specularities and no fireflies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet, and M. Norouzi, “Palette: Image-to-image diffusion models,” 2022.
  2. X. Li, Y. Ren, X. Jin, C. Lan, X. Wang, W. Zeng, X. Wang, and Z. Chen, “Diffusion models for image restoration and enhancement–a comprehensive survey,” arXiv preprint arXiv:2308.09388, 2023.
  3. P. Christensen, J. Fong, J. Shade, W. Wooten, B. Schubert, A. Kensler, S. Friedman, C. Kilpatrick, C. Ramshaw, M. Bannister et al., “Renderman: An advanced path-tracing architecture for movie rendering,” ACM Transactions on Graphics (TOG), vol. 37, no. 3, pp. 1–21, 2018.
  4. M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob, “Mitsuba 2: A retargetable forward and inverse renderer,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–17, 2019.
  5. S. AI, “Deepfloydif.”
  6. L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image diffusion models,” 2023.
  7. M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P. Sen, C. Soler, and S.-E. Yoon, “Recent advances in adaptive sampling and reconstruction for monte carlo rendering,” Computer Graphics Forum, vol. 34, no. 2, pp. 667–681, 2015. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12592
  8. Y. Huo and S. eui Yoon, “A survey on deep learning-based monte carlo denoising,” 2021. [Online]. Available: https://doi.org/10.1007/s41095-021-0209-9
  9. C. R. A. Chaitanya, A. Kaplanyan, C. Schied, M. Salvi, A. E. Lefohn, D. Nowrouzezahrai, and T. Aila, “Interactive reconstruction of monte carlo image sequences using a recurrent denoising autoencoder,” ACM Transactions on Graphics (TOG), vol. 36, pp. 1 – 12, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:3350221
  10. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” 2015.
  11. M. M. Thomas, G. Liktor, C. Peters, S. ye Kim, K. Vaidyanathan, and A. G. Forbes, “Temporally stable real-time joint neural denoising and supersampling,” Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 5, pp. 1 – 22, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:251107201
  12. H. Fan, R. Wang, Y. Huo, and H. Bao, “Real‐time monte carlo denoising with weight sharing kernel prediction network,” Computer Graphics Forum, vol. 40, no. 4, p. 15–27, Jul. 2021. [Online]. Available: http://dx.doi.org/10.1111/cgf.14338
  13. W. Lin, B. Wang, J. Yang, L. Wang, and L.-Q. Yan, “Path‐based monte carlo denoising using a three‐scale neural network,” Computer Graphics Forum, vol. 40, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:221764375
  14. X. Meng, Q. Zheng, A. Varshney, G. Singh, and M. Zwicker, “Real-time monte carlo denoising with the neural bilateral grid,” in Eurographics Symposium on Rendering, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:220284605
  15. J. Lee, S. Lee, M. Yoon, and B. C. Song, “Real-time monte carlo denoising with adaptive fusion network,” IEEE Access, vol. 12, pp. 29 154–29 165, 2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:267950688
  16. J. Munkberg and J. Hasselgren, “Neural denoising with layer embeddings,” Computer Graphics Forum, vol. 39, no. 4, pp. 1–12, 2020. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14049
  17. M. Gharbi, T.-M. Li, M. Aittala, J. Lehtinen, and F. Durand, “Sample-based monte carlo denoising using a kernel-splatting network,” ACM Trans. Graph., vol. 38, no. 4, jul 2019. [Online]. Available: https://doi.org/10.1145/3306346.3322954
  18. T. Vogels, F. Rousselle, B. Mcwilliams, G. Röthlin, A. Harvill, D. Adler, M. Meyer, and J. Novák, “Denoising with kernel prediction and asymmetric loss functions,” ACM Trans. Graph., vol. 37, no. 4, jul 2018. [Online]. Available: https://doi.org/10.1145/3197517.3201388
  19. J. Lee, S. Lee, M. Yoon, and B. C. Song, “Real-time monte carlo denoising with adaptive fusion network,” IEEE Access, vol. 12, pp. 29 154–29 165, 2024.
  20. M. Işık, K. Mullia, M. Fisher, J. Eisenmann, and M. Gharbi, “Interactive monte carlo denoising using affinity of neural features,” ACM Trans. Graph., vol. 40, no. 4, jul 2021. [Online]. Available: https://doi.org/10.1145/3450626.3459793
  21. N. K. Kalantari, S. Bako, and P. Sen, “A machine learning approach for filtering monte carlo noise,” ACM Trans. Graph., vol. 34, no. 4, jul 2015. [Online]. Available: https://doi.org/10.1145/2766977
  22. S. Bako, T. Vogels, B. McWilliams, M. Meyer, J. Novák, A. Harvill, P. Sen, T. DeRose, and F. Rousselle, “Kernel-predicting convolutional networks for denoising monte carlo renderings,” ACM Transactions on Graphics (TOG) (Proceedings of SIGGRAPH 2017), vol. 36, no. 4, July 2017.
  23. M. Balint, K. Wolski, K. Myszkowski, H.-P. Seidel, and R. Mantiuk, “Neural partitioning pyramids for denoising monte carlo renderings,” in ACM SIGGRAPH 2023 Conference Proceedings, ser. SIGGRAPH ’23.   New York, NY, USA: Association for Computing Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3588432.3591562
  24. B. Xu, J. Zhang, R. Wang, K. Xu, Y.-L. Yang, C. Li, and R. Tang, “Adversarial monte carlo denoising with conditioned auxiliary feature modulation,” ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2019), vol. 38, no. 6, pp. 224:1–224:12, 2019.
  25. J. Yu, Y. Nie, C. Long, W. Xu, Q. Zhang, and G. Li, “Monte carlo denoising via auxiliary feature guided self-attention,” ACM Trans. Graph., vol. 40, no. 6, dec 2021. [Online]. Available: https://doi.org/10.1145/3478513.3480565
  26. J. Back, B.-S. Hua, T. Hachisuka, and B. Moon, “Self-supervised post-correction for monte carlo denoising,” in ACM SIGGRAPH 2022 Conference Proceedings, ser. SIGGRAPH ’22.   New York, NY, USA: Association for Computing Machinery, 2022. [Online]. Available: https://doi.org/10.1145/3528233.3530730
  27. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” 2022.
  28. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” 2020.
  29. Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” 2020.
  30. C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi, “Photorealistic text-to-image diffusion models with deep language understanding,” 2022.
  31. J. Wang, Z. Yue, S. Zhou, K. C. Chan, and C. C. Loy, “Exploiting diffusion prior for real-world image super-resolution,” in arXiv preprint arXiv:2305.07015, 2023.
  32. T. Yang, X. X. Peiran Ren, and L. Zhang, “Pixel-aware stable diffusion for realistic image super-resolution and personalized stylization,” in arXiv:2308.14469, 2023.
  33. H. Hu, K. C. Chan, Y.-C. Su, W. Chen, Y. Li, K. Sohn, Y. Zhao, X. Ben, B. Gong, W. Cohen et al., “Instruct-imagen: Image generation with multi-modal instruction,” arXiv preprint arXiv:2401.01952, 2024.
  34. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.
  35. J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila, “Noise2noise: Learning image restoration without clean data,” 2018.
  36. A. T. Áfra, “Intel® Open Image Denoise,” 2024, https://www.openimagedenoise.org.
  37. A. Sauer, T. Karras, S. Laine, A. Geiger, and T. Aila, “Stylegan-t: Unlocking the power of gans for fast large-scale text-to-image synthesis,” in International conference on machine learning.   PMLR, 2023, pp. 30 105–30 118.
  38. A. Sauer, F. Boesel, T. Dockhorn, A. Blattmann, P. Esser, and R. Rombach, “Fast high-resolution image synthesis with latent adversarial diffusion distillation,” arXiv preprint arXiv:2403.12015, 2024.
  39. T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Taylor, T. Luhman, E. Luhman, C. Ng, R. Wang, and A. Ramesh, “Video generation models as world simulators,” 2024. [Online]. Available: https://openai.com/research/video-generation-models-as-world-simulators
  40. A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi, Z. English, V. Voleti, A. Letts, V. Jampani, and R. Rombach, “Stable video diffusion: Scaling latent video diffusion models to large datasets,” 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com