Denoising Monte Carlo Renders with Diffusion Models (2404.00491v2)
Abstract: Physically-based renderings contain Monte-Carlo noise, with variance that increases as the number of rays per pixel decreases. This noise, while zero-mean for good modern renderers, can have heavy tails (most notably, for scenes containing specular or refractive objects). Learned methods for restoring low fidelity renders are highly developed, because suppressing render noise means one can save compute and use fast renders with few rays per pixel. We demonstrate that a diffusion model can denoise low fidelity renders successfully. Furthermore, our method can be conditioned on a variety of natural render information, and this conditioning helps performance. Quantitative experiments show that our method is competitive with SOTA across a range of sampling rates. Qualitative examination of the reconstructions suggests that the image prior applied by a diffusion method strongly favors reconstructions that are like real images -- so have straight shadow boundaries, curved specularities and no fireflies.
- C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet, and M. Norouzi, “Palette: Image-to-image diffusion models,” 2022.
- X. Li, Y. Ren, X. Jin, C. Lan, X. Wang, W. Zeng, X. Wang, and Z. Chen, “Diffusion models for image restoration and enhancement–a comprehensive survey,” arXiv preprint arXiv:2308.09388, 2023.
- P. Christensen, J. Fong, J. Shade, W. Wooten, B. Schubert, A. Kensler, S. Friedman, C. Kilpatrick, C. Ramshaw, M. Bannister et al., “Renderman: An advanced path-tracing architecture for movie rendering,” ACM Transactions on Graphics (TOG), vol. 37, no. 3, pp. 1–21, 2018.
- M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob, “Mitsuba 2: A retargetable forward and inverse renderer,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–17, 2019.
- S. AI, “Deepfloydif.”
- L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image diffusion models,” 2023.
- M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P. Sen, C. Soler, and S.-E. Yoon, “Recent advances in adaptive sampling and reconstruction for monte carlo rendering,” Computer Graphics Forum, vol. 34, no. 2, pp. 667–681, 2015. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12592
- Y. Huo and S. eui Yoon, “A survey on deep learning-based monte carlo denoising,” 2021. [Online]. Available: https://doi.org/10.1007/s41095-021-0209-9
- C. R. A. Chaitanya, A. Kaplanyan, C. Schied, M. Salvi, A. E. Lefohn, D. Nowrouzezahrai, and T. Aila, “Interactive reconstruction of monte carlo image sequences using a recurrent denoising autoencoder,” ACM Transactions on Graphics (TOG), vol. 36, pp. 1 – 12, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:3350221
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” 2015.
- M. M. Thomas, G. Liktor, C. Peters, S. ye Kim, K. Vaidyanathan, and A. G. Forbes, “Temporally stable real-time joint neural denoising and supersampling,” Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 5, pp. 1 – 22, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:251107201
- H. Fan, R. Wang, Y. Huo, and H. Bao, “Real‐time monte carlo denoising with weight sharing kernel prediction network,” Computer Graphics Forum, vol. 40, no. 4, p. 15–27, Jul. 2021. [Online]. Available: http://dx.doi.org/10.1111/cgf.14338
- W. Lin, B. Wang, J. Yang, L. Wang, and L.-Q. Yan, “Path‐based monte carlo denoising using a three‐scale neural network,” Computer Graphics Forum, vol. 40, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:221764375
- X. Meng, Q. Zheng, A. Varshney, G. Singh, and M. Zwicker, “Real-time monte carlo denoising with the neural bilateral grid,” in Eurographics Symposium on Rendering, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:220284605
- J. Lee, S. Lee, M. Yoon, and B. C. Song, “Real-time monte carlo denoising with adaptive fusion network,” IEEE Access, vol. 12, pp. 29 154–29 165, 2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:267950688
- J. Munkberg and J. Hasselgren, “Neural denoising with layer embeddings,” Computer Graphics Forum, vol. 39, no. 4, pp. 1–12, 2020. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14049
- M. Gharbi, T.-M. Li, M. Aittala, J. Lehtinen, and F. Durand, “Sample-based monte carlo denoising using a kernel-splatting network,” ACM Trans. Graph., vol. 38, no. 4, jul 2019. [Online]. Available: https://doi.org/10.1145/3306346.3322954
- T. Vogels, F. Rousselle, B. Mcwilliams, G. Röthlin, A. Harvill, D. Adler, M. Meyer, and J. Novák, “Denoising with kernel prediction and asymmetric loss functions,” ACM Trans. Graph., vol. 37, no. 4, jul 2018. [Online]. Available: https://doi.org/10.1145/3197517.3201388
- J. Lee, S. Lee, M. Yoon, and B. C. Song, “Real-time monte carlo denoising with adaptive fusion network,” IEEE Access, vol. 12, pp. 29 154–29 165, 2024.
- M. Işık, K. Mullia, M. Fisher, J. Eisenmann, and M. Gharbi, “Interactive monte carlo denoising using affinity of neural features,” ACM Trans. Graph., vol. 40, no. 4, jul 2021. [Online]. Available: https://doi.org/10.1145/3450626.3459793
- N. K. Kalantari, S. Bako, and P. Sen, “A machine learning approach for filtering monte carlo noise,” ACM Trans. Graph., vol. 34, no. 4, jul 2015. [Online]. Available: https://doi.org/10.1145/2766977
- S. Bako, T. Vogels, B. McWilliams, M. Meyer, J. Novák, A. Harvill, P. Sen, T. DeRose, and F. Rousselle, “Kernel-predicting convolutional networks for denoising monte carlo renderings,” ACM Transactions on Graphics (TOG) (Proceedings of SIGGRAPH 2017), vol. 36, no. 4, July 2017.
- M. Balint, K. Wolski, K. Myszkowski, H.-P. Seidel, and R. Mantiuk, “Neural partitioning pyramids for denoising monte carlo renderings,” in ACM SIGGRAPH 2023 Conference Proceedings, ser. SIGGRAPH ’23. New York, NY, USA: Association for Computing Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3588432.3591562
- B. Xu, J. Zhang, R. Wang, K. Xu, Y.-L. Yang, C. Li, and R. Tang, “Adversarial monte carlo denoising with conditioned auxiliary feature modulation,” ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2019), vol. 38, no. 6, pp. 224:1–224:12, 2019.
- J. Yu, Y. Nie, C. Long, W. Xu, Q. Zhang, and G. Li, “Monte carlo denoising via auxiliary feature guided self-attention,” ACM Trans. Graph., vol. 40, no. 6, dec 2021. [Online]. Available: https://doi.org/10.1145/3478513.3480565
- J. Back, B.-S. Hua, T. Hachisuka, and B. Moon, “Self-supervised post-correction for monte carlo denoising,” in ACM SIGGRAPH 2022 Conference Proceedings, ser. SIGGRAPH ’22. New York, NY, USA: Association for Computing Machinery, 2022. [Online]. Available: https://doi.org/10.1145/3528233.3530730
- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” 2022.
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” 2020.
- Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” 2020.
- C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi, “Photorealistic text-to-image diffusion models with deep language understanding,” 2022.
- J. Wang, Z. Yue, S. Zhou, K. C. Chan, and C. C. Loy, “Exploiting diffusion prior for real-world image super-resolution,” in arXiv preprint arXiv:2305.07015, 2023.
- T. Yang, X. X. Peiran Ren, and L. Zhang, “Pixel-aware stable diffusion for realistic image super-resolution and personalized stylization,” in arXiv:2308.14469, 2023.
- H. Hu, K. C. Chan, Y.-C. Su, W. Chen, Y. Li, K. Sohn, Y. Zhao, X. Ben, B. Gong, W. Cohen et al., “Instruct-imagen: Image generation with multi-modal instruction,” arXiv preprint arXiv:2401.01952, 2024.
- A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.
- J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila, “Noise2noise: Learning image restoration without clean data,” 2018.
- A. T. Áfra, “Intel® Open Image Denoise,” 2024, https://www.openimagedenoise.org.
- A. Sauer, T. Karras, S. Laine, A. Geiger, and T. Aila, “Stylegan-t: Unlocking the power of gans for fast large-scale text-to-image synthesis,” in International conference on machine learning. PMLR, 2023, pp. 30 105–30 118.
- A. Sauer, F. Boesel, T. Dockhorn, A. Blattmann, P. Esser, and R. Rombach, “Fast high-resolution image synthesis with latent adversarial diffusion distillation,” arXiv preprint arXiv:2403.12015, 2024.
- T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Taylor, T. Luhman, E. Luhman, C. Ng, R. Wang, and A. Ramesh, “Video generation models as world simulators,” 2024. [Online]. Available: https://openai.com/research/video-generation-models-as-world-simulators
- A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi, Z. English, V. Voleti, A. Letts, V. Jampani, and R. Rombach, “Stable video diffusion: Scaling latent video diffusion models to large datasets,” 2023.