Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Synthetic Dataset Generation and Learning From Demonstration Applied to Industrial Manipulation (2404.00447v1)

Published 30 Mar 2024 in cs.RO

Abstract: The aim of this study is to investigate an automated industrial manipulation pipeline, where assembly tasks can be flexibly adapted to production without the need for a robotic expert, both for the vision system and the robot program. The objective of this study is first, to develop a synthetic-dataset-generation pipeline with a special focus on industrial parts, and second, to use Learning-from-Demonstration (LfD) methods to replace manual robot programming, so that a non-robotic expert/process engineer can introduce a new manipulation task by teaching it to the robot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (4)
  1. M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir, M. Elbadrawy, A. Lodhi, and H. Katam, “Blenderproc,” arXiv preprint arXiv:1911.01911, 2019.
  2. H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent advances in robot learning from demonstration,” Annual review of control, robotics, and autonomous systems, vol. 3, pp. 297–330, 2020.
  3. S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-wise voting network for 6dof pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4561–4570.
  4. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primitives: learning attractor models for motor behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com