Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do Vision-Language Models Understand Compound Nouns? (2404.00419v1)

Published 30 Mar 2024 in cs.CV and cs.CL

Abstract: Open-vocabulary vision-LLMs (VLMs) like CLIP, trained using contrastive loss, have emerged as a promising new paradigm for text-to-image retrieval. However, do VLMs understand compound nouns (CNs) (e.g., lab coat) as well as they understand nouns (e.g., lab)? We curate Compun, a novel benchmark with 400 unique and commonly used CNs, to evaluate the effectiveness of VLMs in interpreting CNs. The Compun benchmark challenges a VLM for text-to-image retrieval where, given a text prompt with a CN, the task is to select the correct image that shows the CN among a pair of distractor images that show the constituent nouns that make up the CN. Next, we perform an in-depth analysis to highlight CLIPs' limited understanding of certain types of CNs. Finally, we present an alternative framework that moves beyond hand-written templates for text prompts widely used by CLIP-like models. We employ a LLM to generate multiple diverse captions that include the CN as an object in the scene described by the caption. Our proposed method improves CN understanding of CLIP by 8.25% on Compun. Code and benchmark are available at: https://github.com/sonalkum/Compun

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sonal Kumar (30 papers)
  2. Sreyan Ghosh (46 papers)
  3. S Sakshi (11 papers)
  4. Utkarsh Tyagi (18 papers)
  5. Dinesh Manocha (366 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com