Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General Machine Learning Models for Interpreting and Predicting Efficiency Degradation in Organic Solar Cells (2404.00173v3)

Published 29 Mar 2024 in cs.LG

Abstract: This work presents a set of optimal ML models to represent the temporal degradation suffered by the power conversion efficiency (PCE) of polymeric organic solar cells (OSCs) with a multilayer structure ITO/PEDOT:PSS/P3HT:PCBM/Al. To that aim, we generated a database with 996 entries, which includes up to 7 variables regarding both the manufacturing process and environmental conditions for more than 180 days. Then, we relied on a software framework that brings together a conglomeration of automated ML protocols that execute sequentially against our database by simply command-line interface. This easily permits hyper-optimizing and randomizing seeds of the ML models through exhaustive benchmarking so that optimal models are obtained. The accuracy achieved reaches values of the coefficient determination (R2) widely exceeding 0.90, whereas the root mean squared error (RMSE), sum of squared error (SSE), and mean absolute error (MAE)>1% of the target value, the PCE. Additionally, we contribute with validated models able to screen the behavior of OSCs never seen in the database. In that case, R2~0.96-0.97 and RMSE~1%, thus confirming the reliability of the proposal to predict. For comparative purposes, classical Bayesian regression fitting based on non-linear mean squares (LMS) are also presented, which only perform sufficiently for univariate cases of single OSCs. Hence they fail to outperform the breadth of the capabilities shown by the ML models. Finally, thanks to the standardized results offered by the ML framework, we study the dependencies between the variables of the dataset and their implications for the optimal performance and stability of the OSCs. Reproducibility is ensured by a standardized report altogether with the dataset, which are publicly available at Github.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. doi:10.1016/j.nanoen.2015.06.013.
  2. doi:10.1016/j.rser.2012.12.046.
  3. doi:10.1016/j.ijleo.2023.170602.
  4. doi:10.1007/s11300-010-0148-0.
  5. doi:10.1201/9781315369853.
  6. doi:10.1557/mrs2005.10.
  7. doi:10.1021/ci400187y.
  8. doi:10.1021/ct400195d.
  9. doi:10.1103/PhysRevLett.108.058301.
  10. doi:10.48550/arXiv.1510.02855.
  11. doi:10.1021/jz200866s.
  12. doi:10.1021/acsomega.1c02156.
  13. doi:10.1063/1.4960410.
  14. doi:10.3390/en12040668.
  15. doi:10.1038/sdata.2016.86.
  16. doi:10.1002/adts.202100511.
  17. doi:10.1016/j.solener.2021.09.056.
  18. doi:10.1039/C9SC01992H.
  19. doi:10.1002/adts.201800116.
  20. doi:10.1021/acs.jpclett.1c03526.
  21. doi:10.1039/D1TA09762H.
  22. doi:10.1039/D0EE02838J.
  23. doi:10.3390/en16196974.
  24. doi:10.1016/j.joule.2018.04.026.
  25. doi:10.1039/D3CP00177F.
  26. doi:10.1016/j.heliyon.2023.e16815.
  27. doi:10.1016/j.engappai.2023.107691.
  28. doi:10.1016/j.heliyon.2023.e13167.
  29. doi:10.1016/j.heliyon.2023.e18097.
  30. doi:10.1016/j.joule.2018.11.021.
  31. doi:10.1016/j.engappai.2023.107836.
  32. doi:10.1002/ente.202200980.
  33. doi:10.1007/s12206-021-0140-0.
  34. doi:10.1016/j.heliyon.2023.e21498.
  35. doi:10.1002/solr.202300307.
  36. doi:10.1038/s41467-022-35400-4.
  37. doi:10.1016/j.solmat.2018.12.003.
  38. doi:10.1039/D3TA05966A.
  39. doi:10.1016/j.physb.2024.415779.
  40. doi:10.1021/acsanm.3c05732.
  41. doi:10.1109/TDMR.2019.2933312.
  42. doi:10.1039/D3MA00828B.
  43. doi:10.26434/chemrxiv-2023-k994h.
  44. doi:10.1186/s41601-020-00167-7.
  45. doi:10.1063/1.5009693.
  46. doi:10.1016/j.solener.2013.03.018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets