Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An SVD-like Decomposition of Bounded-Input Bounded-Output Functions (2404.00112v1)

Published 29 Mar 2024 in math.OC, cs.SY, and eess.SY

Abstract: The Singular Value Decomposition (SVD) of linear functions facilitates the calculation of their 2-induced norm and row and null spaces, haLLMarks of linear control theory. In this work, we present a function representation that, similar to SVD, provides an upper bound on the 2-induced norm of bounded-input bounded-output functions, as well as facilitates the computation of generalizations of the notions of row and null spaces. Borrowing from the notion of "lifting" in Koopman operator theory, we construct a finite-dimensional lifting of inputs that relaxes the unitary property of the right-most matrix in traditional SVD, $V*$, to be an injective, norm-preserving mapping to a slightly higher-dimensional space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Functional analysis. Courier Corporation, 2000.
  2. Polynomial decomposition algorithms. Journal of Symbolic Computation, 1(2):159–168, 1985.
  3. Frédéric Brechenmacher. Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition. PhD thesis, Ecole des Hautes Etudes en Sciences Sociales (EHESS), 2006.
  4. Modern koopman theory for dynamical systems. SIAM Review, 64(2):229–340, 2022.
  5. M. D. Buhmann. Radial basis functions. Acta Numerica, 9:1–38, 2000.
  6. Generalized svd reduced-order observers for nonlinear systems. In 2020 American Control Conference (ACC), pages 3473–3478, 2020.
  7. The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211–218, 1936.
  8. JBJ Fourier. Mémoire sur la propagation de la chaleur dans les corps solides,(nepublikováno) pro institute de france. Paris, podáno, 21, 1807.
  9. Michael J Greenacre. Theory and applications of correspondence analysis. 1984.
  10. Matrix analysis. Cambridge university press, 2012.
  11. Extended dynamic mode decomposition with invertible dictionary learning. Neural Networks, 173:106177, 2024.
  12. A class of logistic functions for approximating state-inclusive koopman operators. In 2018 Annual American Control Conference (ACC), pages 4803–4810, 2018.
  13. Koopman operator in systems and control. Springer, 2020.
  14. Koopman operator learning using invertible neural networks. Journal of Computational Physics, 501:112795, 2024.
  15. Igor Mezić. Analysis of fluid flows via spectral properties of the koopman operator. Annual review of fluid mechanics, 45:357–378, 2013.
  16. Wavelet analysis and applications. Springer Science & Business Media, 2007.
  17. Walter Rudin. Real and complex analysis. 1987. Cited on, 156:16, 1987.
  18. Nonlinear svd with asymmetric kernels: feature learning and asymmetric nystr\\\backslash\” om method. arXiv preprint arXiv:2306.07040, 2023.
  19. A non-linear generalization of singular value decomposition and its application to cryptanalysis. arXiv preprint arXiv:0711.4910, 2007.
  20. Charles F. Van Loan. Generalizing the singular value decomposition. SIAM Journal on Numerical Analysis, 13(1):76–83, 1976.
  21. A data–driven approximation of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25:1307–1346, 2015.
  22. Learning deep neural network representations for koopman operators of nonlinear dynamical systems, 2017.
  23. Machine learning by function decomposition. In ICML, pages 421–429. Citeseer, 1997.

Summary

We haven't generated a summary for this paper yet.