2000 character limit reached
The Canvas of Holography in (A)dS/CFT (2404.00070v2)
Published 28 Mar 2024 in hep-th and gr-qc
Abstract: The dynamic of holography between anti-de Sitter space holography and de Sitter holography is a very fascinating comparison, which provides many key insights into what we expect from holography in general. In this Essay, we highlight this dynamic with three examples: first, when taking Wheeler-DeWitt states to the asymptotic boundary, the dual interpretation is unclear in de Sitter. Second, what we make of bulk reconstruction and subregion duality in AdS/CFT is not trivially reflected in the dS/CFT scenario. Third, a way of formulating emergence and subregion-subalgebra duality in de Sitter space does not yet exist. With these examples, we provide some musings on this canvas of holography in the settings of (A)dS/CFT.
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.
- E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, arXiv:hep-th/9802150.
- O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386, arXiv:hep-th/9905111.
- L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2018) 010, arXiv:1611.03470 [hep-th].
- V. Shyam, “Finite Cutoff AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT Holography and the Generalized Gradient Flow,” JHEP 12 (2018) 086, arXiv:1808.07760 [hep-th].
- G. Araujo-Regado, R. Khan, and A. C. Wall, “Cauchy slice holography: a new AdS/CFT dictionary,” JHEP 03 (2023) 026, arXiv:2204.00591 [hep-th].
- A. Laddha, S. G. Prabhu, S. Raju, and P. Shrivastava, “The Holographic Nature of Null Infinity,” SciPost Phys. 10 no. 2, (2021) 041, arXiv:2002.02448 [hep-th].
- R. de Mello Koch and G. Kemp, “Holography of information in AdS/CFT,” JHEP 12 (2022) 095, arXiv:2210.11066 [hep-th].
- S. A. W. Leutheusser, “Emergent Times in Holographic Duality,” Phys. Rev. D 108 no. 8, (2023) 086020, arXiv:2112.12156 [hep-th].
- S. Leutheusser and H. Liu, “Subalgebra-subregion duality: emergence of space and time in holography,” arXiv:2212.13266 [hep-th].
- S. Raju, “Is Holography Implicit in Canonical Gravity?,” Int. J. Mod. Phys. D 28 no. 14, (2019) 1944011, arXiv:1903.11073 [gr-qc].
- T. Chakraborty, J. Chakravarty, V. Godet, P. Paul, and S. Raju, “Holography of information in de Sitter space,” JHEP 12 (2023) 120, arXiv:2303.16316 [hep-th].
- A. Verma and V. Kalvakota, “Revering Musings on de Sitter and Holography, 2023,”. Available at https://aayushayh.github.io/dSnote.pdf.
- T. Chakraborty, J. Chakravarty, V. Godet, P. Paul, and S. Raju, “The Hilbert space of de Sitter quantum gravity,” JHEP 01 (2024) 132, arXiv:2303.16315 [hep-th].
- V. Moncrief, “Space–time symmetries and linearization stability of the Einstein equations. II,” Journal of Mathematical Physics 17 no. 10, (1976) 1893–1902.
- A. Higuchi, “Quantum linearization instabilities of de Sitter spacetime. I,” Classical and Quantum Gravity 8 no. 11, (1991) 1961.
- A. Higuchi, “Quantum linearization instabilities of de Sitter spacetime. II,” Classical and Quantum Gravity 8 no. 11, (1991) 1983.
- M. Ljatifi, “Group averaging and BRST quantization in de Sitter space,” arXiv:2305.11235 [hep-th].
- X. Xiao, “Holographic representation of local operators in de sitter space,” Phys. Rev. D 90 no. 2, (2014) 024061, arXiv:1402.7080 [hep-th].
- D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh, “Relative entropy equals bulk relative entropy,” JHEP 06 (2016) 004, arXiv:1512.06431 [hep-th].
- T. Faulkner and A. Lewkowycz, “Bulk locality from modular flow,” JHEP 07 (2017) 151, arXiv:1704.05464 [hep-th].
- X. Dong, D. Harlow, and A. C. Wall, “Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality,” Phys. Rev. Lett. 117 no. 2, (2016) 021601, arXiv:1601.05416 [hep-th].
- K. Doi, J. Harper, A. Mollabashi, T. Takayanagi, and Y. Taki, “Pseudoentropy in dS/CFT and Timelike Entanglement Entropy,” Phys. Rev. Lett. 130 no. 3, (2023) 031601, arXiv:2210.09457 [hep-th].
- K. Doi, J. Harper, A. Mollabashi, T. Takayanagi, and Y. Taki, “Timelike entanglement entropy,” JHEP 05 (2023) 052, arXiv:2302.11695 [hep-th].
- K. Narayan, “de Sitter future-past extremal surfaces and the entanglement wedge,” Phys. Rev. D 101 no. 8, (2020) 086014, arXiv:2002.11950 [hep-th].
- K. Narayan, “Further remarks on de Sitter space, extremal surfaces and time entanglement,” arXiv:2310.00320 [hep-th].
- K. Narayan, “On extremal surfaces and de Sitter entropy,” Phys. Lett. B 779 (2018) 214–222, arXiv:1711.01107 [hep-th].
- E. Coleman, E. A. Mazenc, V. Shyam, E. Silverstein, R. M. Soni, G. Torroba, and S. Yang, “De Sitter microstates from TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and the Hawking-Page transition,” JHEP 07 (2022) 140, arXiv:2110.14670 [hep-th].
- A. Lewkowycz, J. Liu, E. Silverstein, and G. Torroba, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG and EE, with implications for (A)dS subregion encodings,” JHEP 04 (2020) 152, arXiv:1909.13808 [hep-th].
- G. Batra, G. B. De Luca, E. Silverstein, G. Torroba, and S. Yang, “Bulk-local dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT holography: the Matter with TT¯+Λ2𝑇¯𝑇subscriptΛ2T\bar{T}+\Lambda_{2}italic_T over¯ start_ARG italic_T end_ARG + roman_Λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” arXiv:2403.01040 [hep-th].
- V. Shyam, “TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT deformed CFT on the stretched dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT horizon,” JHEP 04 (2022) 052, arXiv:2106.10227 [hep-th].
- V. Chandrasekaran, G. Penington, and E. Witten, “Large N algebras and generalized entropy,” JHEP 04 (2023) 009, arXiv:2209.10454 [hep-th].
- E. Witten, “Gravity and the crossed product,” JHEP 10 (2022) 008, arXiv:2112.12828 [hep-th].
- N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” JHEP 01 (2015) 073, arXiv:1408.3203 [hep-th].
- A. C. Wall, “A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices,” Phys. Rev. D 85 (2012) 104049, arXiv:1105.3445 [gr-qc]. [Erratum: Phys.Rev.D 87, 069904 (2013)].
- V. Chandrasekaran, R. Longo, G. Penington, and E. Witten, “An algebra of observables for de Sitter space,” JHEP 02 (2023) 082, arXiv:2206.10780 [hep-th].
- E. Witten, “Algebras, Regions, and Observers,” arXiv:2303.02837 [hep-th].
- E. Bahiru, A. Belin, K. Papadodimas, G. Sarosi, and N. Vardian, “Holography and Localization of Information in Quantum Gravity,” arXiv:2301.08753 [hep-th].
- S. Raju, “Failure of the split property in gravity and the information paradox,” Class. Quant. Grav. 39 no. 6, (2022) 064002, arXiv:2110.05470 [hep-th].
- A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao, “The Page curve of Hawking radiation from semiclassical geometry,” JHEP 03 (2020) 149, arXiv:1908.10996 [hep-th].
- G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox,” JHEP 09 (2020) 002, arXiv:1905.08255 [hep-th].
- K. Papadodimas and S. Raju, “An Infalling Observer in AdS/CFT,” JHEP 10 (2013) 212, arXiv:1211.6767 [hep-th].