Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

The Canvas of Holography in (A)dS/CFT (2404.00070v2)

Published 28 Mar 2024 in hep-th and gr-qc

Abstract: The dynamic of holography between anti-de Sitter space holography and de Sitter holography is a very fascinating comparison, which provides many key insights into what we expect from holography in general. In this Essay, we highlight this dynamic with three examples: first, when taking Wheeler-DeWitt states to the asymptotic boundary, the dual interpretation is unclear in de Sitter. Second, what we make of bulk reconstruction and subregion duality in AdS/CFT is not trivially reflected in the dS/CFT scenario. Third, a way of formulating emergence and subregion-subalgebra duality in de Sitter space does not yet exist. With these examples, we provide some musings on this canvas of holography in the settings of (A)dS/CFT.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.
  2. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, arXiv:hep-th/9802150.
  3. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386, arXiv:hep-th/9905111.
  4. L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2018) 010, arXiv:1611.03470 [hep-th].
  5. V. Shyam, “Finite Cutoff AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT Holography and the Generalized Gradient Flow,” JHEP 12 (2018) 086, arXiv:1808.07760 [hep-th].
  6. G. Araujo-Regado, R. Khan, and A. C. Wall, “Cauchy slice holography: a new AdS/CFT dictionary,” JHEP 03 (2023) 026, arXiv:2204.00591 [hep-th].
  7. A. Laddha, S. G. Prabhu, S. Raju, and P. Shrivastava, “The Holographic Nature of Null Infinity,” SciPost Phys. 10 no. 2, (2021) 041, arXiv:2002.02448 [hep-th].
  8. R. de Mello Koch and G. Kemp, “Holography of information in AdS/CFT,” JHEP 12 (2022) 095, arXiv:2210.11066 [hep-th].
  9. S. A. W. Leutheusser, “Emergent Times in Holographic Duality,” Phys. Rev. D 108 no. 8, (2023) 086020, arXiv:2112.12156 [hep-th].
  10. S. Leutheusser and H. Liu, “Subalgebra-subregion duality: emergence of space and time in holography,” arXiv:2212.13266 [hep-th].
  11. S. Raju, “Is Holography Implicit in Canonical Gravity?,” Int. J. Mod. Phys. D 28 no. 14, (2019) 1944011, arXiv:1903.11073 [gr-qc].
  12. T. Chakraborty, J. Chakravarty, V. Godet, P. Paul, and S. Raju, “Holography of information in de Sitter space,” JHEP 12 (2023) 120, arXiv:2303.16316 [hep-th].
  13. A. Verma and V. Kalvakota, “Revering Musings on de Sitter and Holography, 2023,”. Available at https://aayushayh.github.io/dSnote.pdf.
  14. T. Chakraborty, J. Chakravarty, V. Godet, P. Paul, and S. Raju, “The Hilbert space of de Sitter quantum gravity,” JHEP 01 (2024) 132, arXiv:2303.16315 [hep-th].
  15. V. Moncrief, “Space–time symmetries and linearization stability of the Einstein equations. II,” Journal of Mathematical Physics 17 no. 10, (1976) 1893–1902.
  16. A. Higuchi, “Quantum linearization instabilities of de Sitter spacetime. I,” Classical and Quantum Gravity 8 no. 11, (1991) 1961.
  17. A. Higuchi, “Quantum linearization instabilities of de Sitter spacetime. II,” Classical and Quantum Gravity 8 no. 11, (1991) 1983.
  18. M. Ljatifi, “Group averaging and BRST quantization in de Sitter space,” arXiv:2305.11235 [hep-th].
  19. X. Xiao, “Holographic representation of local operators in de sitter space,” Phys. Rev. D 90 no. 2, (2014) 024061, arXiv:1402.7080 [hep-th].
  20. D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh, “Relative entropy equals bulk relative entropy,” JHEP 06 (2016) 004, arXiv:1512.06431 [hep-th].
  21. T. Faulkner and A. Lewkowycz, “Bulk locality from modular flow,” JHEP 07 (2017) 151, arXiv:1704.05464 [hep-th].
  22. X. Dong, D. Harlow, and A. C. Wall, “Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality,” Phys. Rev. Lett. 117 no. 2, (2016) 021601, arXiv:1601.05416 [hep-th].
  23. K. Doi, J. Harper, A. Mollabashi, T. Takayanagi, and Y. Taki, “Pseudoentropy in dS/CFT and Timelike Entanglement Entropy,” Phys. Rev. Lett. 130 no. 3, (2023) 031601, arXiv:2210.09457 [hep-th].
  24. K. Doi, J. Harper, A. Mollabashi, T. Takayanagi, and Y. Taki, “Timelike entanglement entropy,” JHEP 05 (2023) 052, arXiv:2302.11695 [hep-th].
  25. K. Narayan, “de Sitter future-past extremal surfaces and the entanglement wedge,” Phys. Rev. D 101 no. 8, (2020) 086014, arXiv:2002.11950 [hep-th].
  26. K. Narayan, “Further remarks on de Sitter space, extremal surfaces and time entanglement,” arXiv:2310.00320 [hep-th].
  27. K. Narayan, “On extremal surfaces and de Sitter entropy,” Phys. Lett. B 779 (2018) 214–222, arXiv:1711.01107 [hep-th].
  28. E. Coleman, E. A. Mazenc, V. Shyam, E. Silverstein, R. M. Soni, G. Torroba, and S. Yang, “De Sitter microstates from TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and the Hawking-Page transition,” JHEP 07 (2022) 140, arXiv:2110.14670 [hep-th].
  29. A. Lewkowycz, J. Liu, E. Silverstein, and G. Torroba, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG and EE, with implications for (A)dS subregion encodings,” JHEP 04 (2020) 152, arXiv:1909.13808 [hep-th].
  30. G. Batra, G. B. De Luca, E. Silverstein, G. Torroba, and S. Yang, “Bulk-local dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT holography: the Matter with T⁢T¯+Λ2𝑇¯𝑇subscriptΛ2T\bar{T}+\Lambda_{2}italic_T over¯ start_ARG italic_T end_ARG + roman_Λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” arXiv:2403.01040 [hep-th].
  31. V. Shyam, “T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT deformed CFT on the stretched dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT horizon,” JHEP 04 (2022) 052, arXiv:2106.10227 [hep-th].
  32. V. Chandrasekaran, G. Penington, and E. Witten, “Large N algebras and generalized entropy,” JHEP 04 (2023) 009, arXiv:2209.10454 [hep-th].
  33. E. Witten, “Gravity and the crossed product,” JHEP 10 (2022) 008, arXiv:2112.12828 [hep-th].
  34. N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” JHEP 01 (2015) 073, arXiv:1408.3203 [hep-th].
  35. A. C. Wall, “A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices,” Phys. Rev. D 85 (2012) 104049, arXiv:1105.3445 [gr-qc]. [Erratum: Phys.Rev.D 87, 069904 (2013)].
  36. V. Chandrasekaran, R. Longo, G. Penington, and E. Witten, “An algebra of observables for de Sitter space,” JHEP 02 (2023) 082, arXiv:2206.10780 [hep-th].
  37. E. Witten, “Algebras, Regions, and Observers,” arXiv:2303.02837 [hep-th].
  38. E. Bahiru, A. Belin, K. Papadodimas, G. Sarosi, and N. Vardian, “Holography and Localization of Information in Quantum Gravity,” arXiv:2301.08753 [hep-th].
  39. S. Raju, “Failure of the split property in gravity and the information paradox,” Class. Quant. Grav. 39 no. 6, (2022) 064002, arXiv:2110.05470 [hep-th].
  40. A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao, “The Page curve of Hawking radiation from semiclassical geometry,” JHEP 03 (2020) 149, arXiv:1908.10996 [hep-th].
  41. G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox,” JHEP 09 (2020) 002, arXiv:1905.08255 [hep-th].
  42. K. Papadodimas and S. Raju, “An Infalling Observer in AdS/CFT,” JHEP 10 (2013) 212, arXiv:1211.6767 [hep-th].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.