Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Cardiac Color Doppler Frame Rates with Deep Learning (2404.00067v2)

Published 28 Mar 2024 in eess.IV

Abstract: Color Doppler echocardiography enables visualization of blood flow within the heart. However, the limited frame rate impedes the quantitative assessment of blood velocity throughout the cardiac cycle, thereby compromising a comprehensive analysis of ventricular filling. Concurrently, deep learning is demonstrating promising outcomes in post-processing of echocardiographic data for various applications. This work explores the use of deep learning models for intracardiac Doppler velocity estimation from a reduced number of filtered I/Q signals. We used a supervised learning approach by simulating patient-based cardiac color Doppler acquisitions and proposed data augmentation strategies to enlarge the training dataset. We implemented architectures based on convolutional neural networks. In particular, we focused on comparing the U-Net model and the recent ConvNeXt models, alongside assessing real-valued versus complex-valued representations. We found that both models outperformed the state-of-the-art autocorrelator method, effectively mitigating aliasing and noise. We did not observe significant differences between the use of real and complex data. Finally, we validated the models on in vitro and in vivo experiments. All models produced quantitatively comparable results to the baseline and were more robust to noise. ConvNeXt emerged as the sole model to achieve high-quality results on in vivo aliased samples. These results demonstrate the interest of supervised deep learning methods for Doppler velocity estimation from a reduced number of acquisitions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. Faurie, M. Baudet, J. Poree, G. Cloutier, F. Tournoux, and D. Garcia, “Coupling myocardium and vortex dynamics in diverging-wave echocardiography,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66, no. 3, pp. 425–432, 2019.
  2. A. C. H. Yu, K. W. Johnston, and R. S. C. Cobbold, “Frequency-based signal processing for ultrasound color flow imaging,” Canadian Acoustics, vol. 35, no. 2, pp. 11–23, 2007.
  3. T. Loupas, J. Powers, and R. Gill, “An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the doppler equation by means of a two-dimensional autocorrelation approach,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 42, no. 4, pp. 672–688, 1995.
  4. D. Posada, J. Poree, A. Pellissier, B. Chayer, F. Tournoux, G. Cloutier, and D. Garcia, “Staggered multiple-prf ultrafast color doppler,” IEEE Trans Med Imaging, vol. 35, no. 6, pp. 1510–21, 2016.
  5. S. Muth, S. Dort, I. Sebag, M. Blais, and D. Garcia, “Unsupervised dealiasing and denoising of color-doppler data,” Med Image Anal, vol. 15, no. 4, pp. 577–88, 2011.
  6. B. Luijten, N. Chennakeshava, Y. C. Eldar, M. Mischi, and R. J. G. van Sloun, “Ultrasound Signal Processing: From Models to Deep Learning,” Ultrasound in Medicine & Biology, vol. 49, no. 3, pp. 677–698, 2023.
  7. R. J. Van Sloun, H. Belt, K. Janse, and M. Mischi, “Learning doppler with deep neural networks and its application to intra-cardiac echography,” IEEE International Ultrasonics Symposium (IUS), pp. 1–4, 2018.
  8. I. Z. Apostolakis, F. C. Meral, J. S. Shin, F. G. G. M. Vignon, S. Wang, and J. F. Robert, “Systems and methods for generating color doppler images from short and undersampled ensembles,” U.S. Patent WO20228873A1, Jul. 20, 2023.
  9. B. He, J. Lei, X. Lang, Z. Li, W. Cui, and Y. Zhang, “Ultra-fast ultrasound blood flow velocimetry for carotid artery with deep learning,” Artificial Intelligence in Medicine, vol. 144, 2023.
  10. O. Solomon, R. Cohen, Y. Zhang, Y. Yang, Q. He, J. Luo, R. J. van Sloun, and Y. C. Eldar, “Deep unfolded robust PCA with application to clutter suppression in ultrasound,” IEEE Transactions on Medical Imaging, vol. 39, no. 4, pp. 1051–1063, 2020.
  11. K. G. Brown, D. Ghosh, and K. Hoyt, “Deep Learning of Spatiotemporal Filtering for Fast Super-Resolution Ultrasound Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 9, pp. 1820–1829, 2020.
  12. H. Nahas, J. S. Au, T. Ishii, B. Y. S. Yiu, A. J. Y. Chee, and A. C. H. Yu, “A deep learning approach to resolve aliasing artifacts in ultrasound color flow imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 12, pp. 2615–2628, 2020.
  13. H. Nahas, B. Y. Yiu, A. J. Chee, J. S. Au, and A. C. Yu, “Deep-learning-assisted and gpu-accelerated vector doppler imaging with aliasing-resistant velocity estimation,” Ultrasonics, vol. 134, p. 107050, 2023.
  14. H. J. Ling, O. Bernard, , N. Ducros, and D. Garcia, “Phase unwrapping of color doppler echocardiography using deep learning,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 70, no. 8, pp. 810–820, 2023.
  15. Y. Sun, F. Vixege, K. Faraz, S. Mendez, F. Nicoud, D. Garcia, and O. Bernard, “A Pipeline for the Generation of Synthetic Cardiac Color Doppler,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 69, no. 3, pp. 932–941, 2022.
  16. H. J. Ling, N. Painchaud, P.-Y. Courand, P.-M. Jodoin, D. Garcia, and O. Bernard, “Extraction of volumetric indices from echocardiography: Which deep learning solution for clinical use?” Proc. FIMH, pp. 245–54, 2023.
  17. F. Vixège, A. Berod, Y. Sun, S. Mendez, O. Bernard, N. Ducros, P.-Y. Courand, F. Nicoud, and D. Garcia, “Physics-constrained intraventricular vector flow mapping by color doppler,” Physics in Medicine & Biology, vol. 66, no. 24, p. 245019, Dec. 2021.
  18. D. Garcia, “SIMUS: An open-source simulator for medical ultrasound imaging. Part I: Theory & examples,” Computer Methods and Programs in Biomedicine, vol. 218, p. 106726, 2022.
  19. A. Cigier, F. Varray, and D. Garcia, “SIMUS: An open-source simulator for medical ultrasound imaging. Part II: Comparison with four simulators,” Computer Methods and Programs in Biomedicine, vol. 220, p. 106774, 2022.
  20. D. Garcia, “Make the most of MUST, an open-source Matlab UltraSound Toolbox,” in IEEE International Ultrasonics Symposium (IUS).   Xi’an, China: IEEE, 2021, pp. 1–4.
  21. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234––241, 2015.
  22. C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F. Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep Complex Networks,” ICLR, 2018.
  23. M. W. Matthès, Y. Bromberg, J. de Rosny, and S. M. Popoff, “Learning and avoiding disorder in multimode fibers,” Phys. Rev. X, vol. 11, 2021.
  24. Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for the 2020s,” CVPR, 2022.
  25. F. Mehregan, F. Tournoux, S. Muth, P. Pibarot, R. Rieu, G. Cloutier, and D. Garcia, “Doppler vortography: a color Doppler approach for quantification of the intraventricular blood flow vortices,” Ultrasound in medicine & biology, vol. 40, no. 1, pp. 210–221, 2014.
  26. J. Lu, F. Millioz, D. Garcia, S. Salles, D. Ye, and D. Friboulet, “Complex convolutional neural networks for ultrafast ultrasound imaging reconstruction from in-phase/quadrature signal,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 69, no. 2, pp. 592–603, 2022.
  27. C. Chnafa, S. Mendez, R. Moreno, and F. Nicoud, “Using Image-based CFD to Investigate the Intracardiac Turbulence,” in Modeling the Heart and the Circulatory System, A. Quarteroni, Ed.   Cham: Springer International Publishing, 2015, vol. 14, pp. 97–117, series Title: MS&A.
Citations (1)

Summary

We haven't generated a summary for this paper yet.