Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An FPGA-Based Reconfigurable Accelerator for Convolution-Transformer Hybrid EfficientViT (2403.20230v1)

Published 29 Mar 2024 in cs.AR and cs.LG

Abstract: Vision Transformers (ViTs) have achieved significant success in computer vision. However, their intensive computations and massive memory footprint challenge ViTs' deployment on embedded devices, calling for efficient ViTs. Among them, EfficientViT, the state-of-the-art one, features a Convolution-Transformer hybrid architecture, enhancing both accuracy and hardware efficiency. Unfortunately, existing accelerators cannot fully exploit the hardware benefits of EfficientViT due to its unique architecture. In this paper, we propose an FPGA-based accelerator for EfficientViT to advance the hardware efficiency frontier of ViTs. Specifically, we design a reconfigurable architecture to efficiently support various operation types, including lightweight convolutions and attention, boosting hardware utilization. Additionally, we present a time-multiplexed and pipelined dataflow to facilitate both intra- and inter-layer fusions, reducing off-chip data access costs. Experimental results show that our accelerator achieves up to 780.2 GOPS in throughput and 105.1 GOPS/W in energy efficiency at 200MHz on the Xilinx ZCU102 FPGA, which significantly outperforms prior works.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” ArXiv, vol. abs/2010.11929, 2020.
  2. H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. J’egou, “Training data-efficient image transformers & distillation through attention,” in International Conference on Machine Learning, 2020.
  3. H. You, Z. Sun, H. Shi, Z. Yu, Y. Zhao, Y. Zhang, C. Li, B. Li, and Y. Lin, “Vitcod: Vision transformer acceleration via dedicated algorithm and accelerator co-design,” ArXiv, vol. abs/2210.09573, 2022.
  4. J. Dass, S. Wu, H. Shi, C. Li, Z. Ye, Z. Wang, and Y. Lin, “Vitality: Unifying low-rank and sparse approximation for vision transformer acceleration with a linear taylor attention,” ArXiv, vol. abs/2211.05109, 2022.
  5. D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv: Learning, 2016.
  6. Y. Lin, T. Zhang, P. Sun, Z. Li, and S. Zhou, “Fq-vit: Post-training quantization for fully quantized vision transformer,” in International Joint Conference on Artificial Intelligence, 2021.
  7. Z. Yuan, C. Xue, Y. Chen, Q. Wu, and G. Sun, “Ptq4vit: Post-training quantization framework for vision transformers,” ArXiv, vol. abs/2111.12293, 2021.
  8. H. Cai, C. Gan, and S. Han, “Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition,” 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
  9. W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, “Pyramid vision transformer: A versatile backbone for dense prediction without convolutions,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 548–558, 2021.
  10. W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, “Pvt v2: Improved baselines with pyramid vision transformer,” Computational Visual Media, vol. 8, pp. 415 – 424, 2021.
  11. D. Han, X. Pan, Y. Han, S. Song, and G. Huang, “Flatten transformer: Vision transformer using focused linear attention,” ArXiv, vol. abs/2308.00442, 2023.
  12. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002, 2021.
  13. M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.
  14. A. G. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for mobilenetv3,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1314–1324, 2019.
  15. M. Sun, H. Ma, G. Kang, Y. Jiang, T. Chen, X. Ma, Z. Wang, and Y. Wang, “Vaqf: Fully automatic software-hardware co-design framework for low-bit vision transformer,” ArXiv, vol. abs/2201.06618, 2022.
  16. T. Wang, L. Gong, C. Wang, Y. Yang, Y. Gao, X. Zhou, and H. Chen, “Via: A novel vision-transformer accelerator based on fpga,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, pp. 4088–4099, 2022.
  17. Z. Li, M. Sun, A. Lu, H. Ma, G. Yuan, Y. Xie, H. Tang, Y. Li, M. E. Leeser, Z. Wang, X. Lin, and Z. Fang, “Auto-vit-acc: An fpga-aware automatic acceleration framework for vision transformer with mixed-scheme quantization,” 2022 32nd International Conference on Field-Programmable Logic and Applications (FPL), pp. 109–116, 2022.
  18. Y. Zhang, B. Sun, W. Jiang, Y. Ha, M. Hu, and W. Zhao, “Wsq-addernet: Efficient weight standardization based quantized addernet fpga accelerator design with high-density int8 dsp-lut co-packing optimization,” 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1–9, 2022.
  19. Y. Yu, T. Zhao, K. Wang, and L. He, “Light-opu: An fpga-based overlay processor for lightweight convolutional neural networks,” Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2020.
  20. Xilinx, “Wp486: Deep learning with int8 optimization on xilinx devices,” in White Paper, 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Haikuo Shao (6 papers)
  2. Huihong Shi (18 papers)
  3. Wendong Mao (13 papers)
  4. Zhongfeng Wang (50 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets