Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Na Vacancy Driven Phase Transformation and Fast Ion Conduction in W-doped Na$_3$SbS$_4$ from Machine Learning Force Fields (2403.20138v1)

Published 29 Mar 2024 in cond-mat.mtrl-sci

Abstract: Solid-state sodium batteries require effective electrolytes that conduct at room temperature. The Na$3$SbS$_4$ (Pn = P, Sb; Ch = S, Se) family have been studied for their high Na ion conductivity. The population of Na vacancies, which mediate ion diffusion in these materials, can be enhanced through aliovalent doping on the pnictogen site. To probe the microscopic role of extrinsic doping, and its impact on diffusion and phase stability, we trained a machine learning force field for Na${3-x}$W${x}$Sb${1-x}$S$_4$ based on an equivariant graph neural network. Analysis of large-scale molecular dynamics trajectories shows that an increased Na vacancy population stabilises the global cubic phase at lower temperatures with enhanced Na ion diffusion, and that the explicit role of the substitutional W dopants is limited. In the global cubic phase we observe large and long-lived deviations of atoms from the averaged symmetry, echoing recent experimental suggestions. Evidence of correlated Na ion diffusion is also presented that underpins the suggested superionic nature of these materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. Janek, J.; Zeier, W. G. A solid future for battery development. Nature Energy 2016, 1
  2. Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.; Chen, L. Solid‐State Sodium Batteries. Advanced Energy Materials 2018, 8
  3. Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Communications 2012, 3
  4. Zhang, L.; Zhang, D.; Yang, K.; Yan, X.; Wang, L.; Mi, J.; Xu, B.; Li, Y. Vacancy‐Contained Tetragonal Na3SbS4 Superionic Conductor. Advanced Science 2016, 3
  5. Hayashi, A.; Masuzawa, N.; Yubuchi, S.; Tsuji, F.; Hotehama, C.; Sakuda, A.; Tatsumisago, M. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nature Communications 2019, 10
  6. Musaelian, A.; Batzner, S.; Johansson, A.; Sun, L.; Owen, C. J.; Kornbluth, M.; Kozinsky, B. Learning local equivariant representations for large-scale atomistic dynamics. Nature Communications 2023, 14
  7. Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J. P.; Kornbluth, M.; Molinari, N.; Smidt, T. E.; Kozinsky, B. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications 2022, 13
  8. Batatia, I.; Kovacs, D. P.; Simm, G. N. C.; Ortner, C.; Csanyi, G. MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. Advances in Neural Information Processing Systems. 2022
  9. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems. 2019
  10. Johansson, A.; Musaelian, A. pair_allegro; https://github.com/mir-group/pair_allegro. 2023; \urlhttps://github.com/mir-group/pair_allegro
  11. Ångqvist, M.; Muñoz, W. A.; Rahm, J. M.; Fransson, E.; Durniak, C.; Rozyczko, P.; Rod, T. H.; Erhart, P. ICET – A Python Library for Constructing and Sampling Alloy Cluster Expansions. Advanced Theory and Simulations 2019, 2
  12. McCluskey, A. R.; Coles, S. W.; Morgan, B. J. Accurate Estimation of Diffusion Coefficients and their Uncertainties from Computer Simulation. 2023; \urlhttps://arxiv.org/abs/2305.18244

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com