Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MoMa-Pos: An Efficient Object-Kinematic-Aware Base Placement Optimization Framework for Mobile Manipulation (2403.19940v2)

Published 29 Mar 2024 in cs.RO

Abstract: In this work, we present MoMa-Pos, a framework that optimizes base placement for mobile manipulators, focusing on navigation-manipulation tasks in environments with both rigid and articulated objects. Base placement is particularly critical in such environments, where improper positioning can severely hinder task execution if the object's kinematics are not adequately accounted for. MoMa-Pos selectively reconstructs the environment by prioritizing task-relevant key objects, enhancing computational efficiency and ensuring that only essential kinematic details are processed. The framework leverages a graph-based neural network to predict object importance, allowing for focused modeling while minimizing unnecessary computations. Additionally, MoMa-Pos integrates inverse reachability maps with environmental kinematic properties to identify feasible base positions tailored to the specific robot model. Extensive evaluations demonstrate that MoMa-Pos outperforms existing methods in both real and simulated environments, offering improved efficiency, precision, and adaptability across diverse settings and robot models. Supplementary material can be found at https://yding25.com/MoMa-Pos

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. S. Yenamandra, A. Ramachandran, K. Yadav, A. Wang, M. Khanna, T. Gervet, T.-Y. Yang, V. Jain, A. W. Clegg, J. Turner, et al., “Homerobot: Open-vocabulary mobile manipulation,” arXiv preprint arXiv:2306.11565, 2023.
  2. S. Andrew, Y. Karmesh, C. Alex, B. Vincent-Pierre, G. Aaron, C. Angel, S. Manolis, K. Zsolt, and B. Dhruv, “Habitat rearrangement challenge 2022,” 2022.
  3. J. Gu, D. S. Chaplot, H. Su, and J. Malik, “Multi-skill mobile manipulation for object rearrangement,” arXiv preprint arXiv:2209.02778, 2022.
  4. X. Zhang, Y. Zhu, Y. Ding, Y. Zhu, P. Stone, and S. Zhang, “Visually grounded task and motion planning for mobile manipulation,” arXiv preprint arXiv:2202.10667, 2022.
  5. H. Zhang, K. Mi, and Z. Zhang, “Base placement optimization for coverage mobile manipulation tasks,” arXiv preprint arXiv:2304.08246, 2023.
  6. Z. Fu, T. Z. Zhao, and C. Finn, “Mobile aloha: Learning bimanual mobile manipulation with low-cost whole-body teleoperation,” in arXiv, 2024.
  7. C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich, “The design of stretch: A compact, lightweight mobile manipulator for indoor human environments,” in International Conference on Robotics and Automation (ICRA), 2022, pp. 3150–3157.
  8. A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre, M. Mukadam, D. S. Chaplot, O. Maksymets, et al., “Habitat 2.0: Training home assistants to rearrange their habitat,” Advances in Neural Information Processing Systems, vol. 34, pp. 251–266, 2021.
  9. X. Puig, E. Undersander, A. Szot, M. D. Cote, T.-Y. Yang, R. Partsey, R. Desai, A. W. Clegg, M. Hlavac, S. Y. Min, et al., “Habitat 3.0: A co-habitat for humans, avatars and robots,” arXiv preprint arXiv:2310.13724, 2023.
  10. K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su, “Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding,” in IEEE/CVF conference on Computer Vision and Pattern Recognition, 2019, pp. 909–918.
  11. Q. Chen, M. Memmel, A. Fang, A. Walsman, D. Fox, and A. Gupta, “Urdformer: Constructing interactive realistic scenes from real images via simulation and generative modeling,” in Towards Generalist Robots: Learning Paradigms for Scalable Skill Acquisition@ CoRL2023, 2023.
  12. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in ECCV, 2016, pp. 21–37.
  13. R. Girshick, “Fast R-CNN,” in ICCV, 2015, pp. 1440–1448.
  14. T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother, and J. Matas, “Bop challenge 2020 on 6d object localization,” in ECCV Workshops, 2020, pp. 577–594.
  15. T. Silver, R. Chitnis, A. Curtis, J. B. Tenenbaum, T. Lozano-Perez, and L. P. Kaelbling, “Planning with learned object importance in large problem instances using graph neural networks,” in AAAI, vol. 35, no. 13, 2021, pp. 11 962–11 971.
  16. B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710.
  17. M. Vijaymeena and K. Kavitha, “A survey on similarity measures in text mining,” Machine Learning and Applications: An International Journal, vol. 3, no. 2, pp. 19–28, 2016.
  18. S. S. Ge and Y. J. Cui, “Dynamic motion planning for mobile robots using potential field method,” Autonomous robots, vol. 13, pp. 207–222, 2002.
  19. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.
  20. K. L. Hoffman, M. Padberg, G. Rinaldi, et al., “Traveling salesman problem,” Encyclopedia of operations research and management science, vol. 1, pp. 1573–1578, 2013.
  21. H. H. Chieng and N. Wahid, “A performance comparison of genetic algorithm’s mutation operators in n-cities open loop travelling salesman problem,” in Recent Advances on Soft Computing and Data Mining: SCDM-2014.   Springer, 2014, pp. 89–97.
  22. S. Boyd and J. Mattingley, “Branch and bound methods,” Notes for EE364b, Stanford University, vol. 2006, p. 07, 2007.
  23. G. Kizilateş and F. Nuriyeva, “On the nearest neighbor algorithms for the traveling salesman problem,” in Advances in Computational Science, Engineering and Information Technology: CCSEIT-2013.   Springer, 2013, pp. 111–118.
  24. E. Osaba, X.-S. Yang, and J. Del Ser, “Traveling salesman problem: a perspective review of recent research and new results with bio-inspired metaheuristics,” Nature-inspired Computation and Swarm Intelligence, pp. 135–164, 2020.
  25. I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, 2012.
  26. A. Makhal and A. K. Goins, “Reuleaux: Robot base placement by reachability analysis,” in IEEE International Conference on Robotic Computing (IRC), 2018, pp. 137–142.
  27. N. Vahrenkamp, T. Asfour, and R. Dillmann, “Robot placement based on reachability inversion,” in IEEE International Conference on Robotics and Automation, 2013, pp. 1970–1975.
  28. F. Zacharias, C. Borst, M. Beetz, and G. Hirzinger, “Positioning mobile manipulators to perform constrained linear trajectories,” in IROS, 2008, pp. 2578–2584.
  29. M. Attamimi, K. Ito, T. Nakamura, and T. Nagai, “A planning method for efficient mobile manipulation considering ambiguity,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 965–972.
  30. F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace structure: representing robot capabilities,” in IROS, 2007, pp. 3229–3236.
  31. F. Reister, M. Grotz, and T. Asfour, “Combining navigation and manipulation costs for time-efficient robot placement in mobile manipulation tasks,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9913–9920, 2022.
  32. F. Stulp, A. Fedrizzi, and M. Beetz, “Action-related place-based mobile manipulation,” in IROS, 2009, pp. 3115–3120.
  33. D. Honerkamp, T. Welschehold, and A. Valada, “Learning kinematic feasibility for mobile manipulation through deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6289–6296, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Beichen Shao (1 paper)
  2. Yan Ding (41 papers)
  3. Xingchen Wang (4 papers)
  4. Fuqiang Gu (9 papers)
  5. Chao Chen (662 papers)
  6. Nieqing Cao (6 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com