Parameter choice strategies for regularized least squares approximation of noisy continuous functions on the unit circle (2403.19927v3)
Abstract: This paper explores the incorporation of Tikhonov regularization into the least squares approximation scheme using trigonometric polynomials on the unit circle. This approach encompasses interpolation and hyperinterpolation as specific cases. With the aid of the de la Vall\'ee-Poussin approximation, we derive a uniform error bound and a concrete $L_2$ error bound. These error estimates demonstrate the effectiveness of Tikhonov regularization in the denoising process. A new regularity condition for the selection of regularization parameters is proposed. We investigate three strategies for choosing regularization parameters: Morozov's discrepancy principle, the L-curve, and generalized cross-validation, by explicitly combining these error bounds of the approximating trigonometric polynomial. We show that Morozov's discrepancy principle satisfies the proposed regularity condition, while the other two methods do not. Finally, numerical examples are provided to illustrate how the aforementioned methodologies, when applied with well-chosen parameters, can significantly improve the quality of approximation.
- Lasso trigonometric polynomial approximation for periodic function recovery in equidistant points. Applied Numerical Mathematics 194 (2023), 115–130.
- Regularized least squares approximations on the sphere using spherical designs. SIAM Journal on Numerical Analysis 50, 3 (2012), 1513–1534.
- Tikhonov regularization for polynomial approximation problems in Gauss quadrature points. Inverse Problems 37, 1 (2020), 015008.
- Lasso hyperinterpolation over general regions. SIAM Journal on Scientific Computing 43, 6 (2021), A3967–A3991.
- On the quadrature exactness in hyperinterpolation. BIT Numerical Mathematics 62, 4 (Dec 2022), 1899–1919.
- Aronszajn, N. Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 3 (1950), 337–404.
- On the numerical stability of the second barycentric formula for trigonometric interpolation in shifted equispaced points. IMA Journal of Numerical Analysis 37, 3 (08 2016), 1355–1374.
- Bakushinskii, A. Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion. USSR Computational Mathematics and Mathematical Physics 24, 4 (1984), 181–182.
- Berrut, J. P. Baryzentrische formeln zur trigonometrischen interpolation (i). Zeitschrift für angewandte Mathematik und Physik ZAMP 35, 1 (1984), 91–105.
- Barycentric Lagrange interpolation. SIAM Review 46, 3 (2004), 501–517.
- A simple algorithm to find the L-curve corner in the regularisation of ill-posed inverse problems. IOP SciNotes 1, 2 (aug 2020), 025004.
- Constructive Approximation. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1993.
- Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 2 (1979), 215–223.
- Generalized cross-validation for large-scale problems. Journal of Computational and Graphical Statistics 6, 1 (1997), 1–34.
- Hanke, M. Limitations of the L-curve method in ill-posed problems. BIT Numerical Mathematics 36, 2 (1996), 287–301.
- Hansen, P. C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review 34, 4 (1992), 561–580.
- Hansen, P. C. The L-curve and its use in the numerical treatment of inverse problems. Computational Inverse Problems in Electrocardiology 4 (01 2001), 119–142.
- Hansen, P. C. Regularization tools version 4.0 for matlab 7.3. Numerical Algorithms 46, 2 (2007), 189–194.
- The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing 14, 6 (1993), 1487–1503.
- Henrici, P. Barycentric formulas for interpolating trigonometric polynomials and their conjugates. Numerische Mathematik 33, 2 (1979), 225–234.
- L2subscript𝐿2{L}_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data. Journal of Computational and Applied Mathematics 408 (2022), 114118.
- Hyperinterpolation on the sphere. In: Frontiers in Interpolation and Approximation(Dedicated to the Memory of Ambikeshwar Sharma) (eds.: N. K. Govil, H. N. Mhaskar, Ram N. Mohapatra, Zuhair Nashed and J. Szabados). Champman &\&& Hall/CRC (2006), 213–248.
- Jackson, D. Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische summen gegebener Ordnung. Göttingen: Dieterich, 1911.
- Kress, R. Numerical Analysis. Graduate Texts in Mathematics vol 181. Springer, New York, 1998.
- Regularization Theory for Ill-posed Problems: Selected Topics. Inverse and ill-posed problems series. Walter de Gruyter GmbH & Company KG, 2013.
- Mhaskar, H. N. Polynomial operators and local smoothness classes on the unit interval. Journal of Approximation Theory 131, 2 (2004), 243–267.
- Mhaskar, H. N. Polynomial operators and local smoothness classes on the unit interval, ii. Jaen Journal on Approximation Theorem 1 (2005), 1–25.
- Mhaskar, H. N. A direct approach for function approximation on data defined manifolds. Neural Networks 132 (2020), 253–268.
- Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature. Mathematics of Computation 70, 235 (2001), 1113–1130.
- Filtered Legendre expansion method for numerical differentiation at the boundary point with application to blood glucose predictions. Applied Mathematics and Computation 224 (2013), 835–847.
- A deep learning approach to diabetic blood glucose prediction. Frontiers in Applied Mathematics and Statistics 3 (2017), 14.
- Morozov, V. A. On the solution of functional equations by the method of regularization. Doklady Mathematics 7 (1966), 414–417.
- Nursultanov, E. D. Nikol’skii’s inequality for different metrics and properties of the sequence of norms of the Fourier sums of a function in the Lorentz space. Proceedings of the Steklov Institute of Mathematics 255, 1 (2006), 185–202.
- Pereverzyev, S. An introduction to artificial intelligence based on reproducing kernel Hilbert spaces. Springer Nature, 2022.
- Parameter choice strategies for least-squares approximation of noisy smooth functions on the sphere. SIAM Journal on Numerical Analysis 53, 2 (2015), 820–835.
- An algorithm for estimating the optimal regularization parameter by the L-curve. Rendiconti di Matematica, Serie VII 25 (01 2005), 69–84.
- Salzer, H. E. Coefficients for facilitating trigonometric interpolation. Journal of Mathematics and Physics 27 (1948), 274–278.
- Sloan, I. Polynomial interpolation and hyperinterpolation over general regions. Journal of Approximation Theory 83, 2 (1995), 238–254.
- Sloan, I. H. Polynomial approximation on spheres - generalizing de la Vallée-Poussin. Computational Methods in Applied Mathematics 11, 4 (2011), 540–552.
- Fourier Analysis: An Introduction. Princeton Lectures in Analysis. Princeton University Press, 2003.
- Alias-free digital synthesis of classic analog waveforms. In International Conference on Mathematics and Computing (1996).
- Use of the regularization method in non-linear problems. USSR Computational Mathematics and Mathematical Physics 5, 3 (1965), 93–107.
- Solutions of ill-posed problems. Winston & Sons, Washington, D.C., 1977.
- Chebfun Version 5.7.0. Chebfun Development Team, 2017.
- The exponentially convergent trapezoidal rule. SIAM Review 56, 3 (2014), 385–458.
- Non-convergence of the L-curve regularization parameter selection method. Inverse Problems 12, 4 (1996), 535–547.
- Extension of chebfun to periodic functions. SIAM Journal on Scientific Computing 37, 5 (2015), C554–C573.
- Zygmund, A. Trigonometric Series. Cambridge Mathematical Library. Cambridge University Press, 2002.