Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The State of Lithium-Ion Battery Health Prognostics in the CPS Era (2403.19816v1)

Published 28 Mar 2024 in cs.LG and eess.SP

Abstract: Lithium-ion batteries (Li-ion) have revolutionized energy storage technology, becoming integral to our daily lives by powering a diverse range of devices and applications. Their high energy density, fast power response, recyclability, and mobility advantages have made them the preferred choice for numerous sectors. This paper explores the seamless integration of Prognostics and Health Management within batteries, presenting a multidisciplinary approach that enhances the reliability, safety, and performance of these powerhouses. Remaining useful life (RUL), a critical concept in prognostics, is examined in depth, emphasizing its role in predicting component failure before it occurs. The paper reviews various RUL prediction methods, from traditional models to cutting-edge data-driven techniques. Furthermore, it highlights the paradigm shift toward deep learning architectures within the field of Li-ion battery health prognostics, elucidating the pivotal role of deep learning in addressing battery system complexities. Practical applications of PHM across industries are also explored, offering readers insights into real-world implementations.This paper serves as a comprehensive guide, catering to both researchers and practitioners in the field of Li-ion battery PHM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (131)
  1. X. Zhou, L. Cheng, Y. Wan, N. Qi, L. Tian, and F. You, “Research on lithium-ion battery safety risk assessment based on measured information,” in 2020 IEEE Sustainable Power and Energy Conference (iSPEC), 2020, pp. 2047–2052. [Online]. Available: https://ieeexplore.ieee.org/document/9351160
  2. Y. Cheng, K. Hu, J. Wu, H. Zhu, and X. Shao, “A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings,” Advanced Engineering Informatics, vol. 48, p. 101247, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474034621000021
  3. C. Zheng, W. Liu, B. Chen, D. Gao, Y. Cheng, Y. Yang, X. Zhang, S. Li, Z. Huang, and J. Peng, “A data-driven approach for remaining useful life prediction of aircraft engines,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018, pp. 184–189. [Online]. Available: https://ieeexplore.ieee.org/document/8569915
  4. Y. Yoo and J.-G. Baek, “A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network,” Applied Sciences, vol. 8, no. 7, 2018. [Online]. Available: https://www.mdpi.com/2076-3417/8/7/1102
  5. Z. Huang, Z. Xu, W. Wang, and Y. Sun, “Remaining useful life prediction for a nonlinear heterogeneous wiener process model with an adaptive drift,” IEEE Transactions on Reliability, vol. 64, no. 2, pp. 687–700, 2015. [Online]. Available: https://ieeexplore.ieee.org/document/7051292
  6. H. Hanachi, J. Liu, A. Banerjee, Y. Chen, and A. Koul, “A physics-based modeling approach for performance monitoring in gas turbine engines,” IEEE Transactions on Reliability, vol. 64, no. 1, pp. 197–205, 2015. [Online]. Available: https://ieeexplore.ieee.org/document/6963507
  7. Y. Lei, N. Li, S. Gontarz, J. Lin, S. Radkowski, and J. Dybala, “A model-based method for remaining useful life prediction of machinery,” IEEE Transactions on Reliability, vol. 65, no. 3, pp. 1314–1326, 2016. [Online]. Available: https://www.researchgate.net/publication/304611910_A_Model-Based_Method_for_Remaining_Useful_Life_Prediction_of_Machinery
  8. A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and D. Riu, “A review on lithium-ion battery ageing mechanisms and estimations for automotive applications,” Journal of Power Sources, vol. 241, pp. 680–689, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378775313008185
  9. “A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems,” Renewable and Sustainable Energy Reviews, vol. 131, p. 110015, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032120303063
  10. Y. Li and L. Zhang, “Self-adaptive current charging strategy considering the variation of internal resistance of li-ion battery,” in 2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI), 2023, pp. 1–6.
  11. M. J. Jung, Y. Xu, H. J. Jang, W. S. Kim, and S.-G. Lee, “Online electrochemical impedance spectroscopy estimation of lithium-ion batteries using a deep learning framework,” in 2023 IEEE Transportation Electrification Conference and Expo (ITEC), 2023, pp. 1–5.
  12. M. Ahwiadi and W. Wang, “An enhanced mutated particle filter technique for system state estimation and battery life prediction,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 3, pp. 923–935, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8421633
  13. L. Zhang, Z. Mu, and C. Sun, “Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter,” IEEE Access, vol. 6, pp. 17 729–17 740, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8318570
  14. I. Jokić, v. Zečević, and B. Krstajić, “State-of-charge estimation of lithium-ion batteries using extended kalman filter and unscented kalman filter,” in 2018 23rd International Scientific-Professional Conference on Information Technology (IT), 2018, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/8350462
  15. D. Pan, H. Li, and Y. Song, “A comparative study of particle filters and its variants in lithium-ion battery soh estimation,” in 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), 2020, pp. 198–203. [Online]. Available: https://ieeexplore.ieee.org/document/9261654
  16. X. Zheng, H. Wu, and Y. Chen, “Remaining useful life prediction of lithium-ion battery using a hybrid model-based filtering and data-driven approach,” in 2017 11th Asian Control Conference (ASCC), 2017, pp. 2698–2703. [Online]. Available: https://ieeexplore.ieee.org/document/8287603
  17. Z. Li, H. Fang, and Z. Xiao, “A novel hybrid model based on ensemble strategy for lithium-ion battery residual life prediction,” in 2018 Chinese Automation Congress (CAC), 2018, pp. 2084–2089. [Online]. Available: https://ieeexplore.ieee.org/document/8623088
  18. Z. Li, H. Fang, and Y. Yan, “An ensemble hybrid model with outlier detection for prediction of lithium-ion battery remaining useful life,” in 2019 Chinese Control And Decision Conference (CCDC), 2019, pp. 2630–2635. [Online]. Available: https://ieeexplore.ieee.org/document/8832623
  19. “Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression,” Neurocomputing, vol. 376, pp. 95–102, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231219313426
  20. K. Park, Y. Choi, W. J. Choi, H.-Y. Ryu, and H. Kim, “Lstm-based battery remaining useful life prediction with multi-channel charging profiles,” IEEE Access, vol. 8, pp. 20 786–20 798, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8967059
  21. E. Morais, A. Ferreira, S. Cunha, R. Barros, A. Rocha, and S. Goldenstein, “A multiple camera methodology for automatic localization and tracking of futsal players,” Pattern Recognition Letters, vol. 39, p. 21–30, 04 2014. [Online]. Available: https://www.researchgate.net/publication/260042847_A_multiple_camera_methodology_for_automatic_localization_and_tracking_of_futsal_players
  22. W. Xian, B. Long, M. Li, and H. Wang, “Prognostics of lithium-ion batteries based on the verhulst model, particle swarm optimization and particle filter,” IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 1, pp. 2–17, 2014. [Online]. Available: https://ieeexplore.ieee.org/document/6587560
  23. C. Hu, G. Jain, P. Tamirisa, and T. Gorka, “Method for estimating capacity and predicting remaining useful life of lithium-ion battery,” in 2014 International Conference on Prognostics and Health Management, 2014, pp. 1–8. [Online]. Available: https://ieeexplore.ieee.org/document/7036362
  24. Z. B. Omariba, L. Zhang, and D. Sun, “Remaining useful life prediction of electric vehicle lithium-ion battery based on particle filter method,” in 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), 2018, pp. 412–416. [Online]. Available: https://ieeexplore.ieee.org/document/8367718
  25. “Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator,” Microelectronics Reliability, vol. 88-90, pp. 1189–1194, 2018, 29th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis ( ESREF 2018 ). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002627141830595X
  26. “Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries,” eTransportation, vol. 1, p. 100004, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590116819300049
  27. “Battery health management for small-size rotary-wing electric unmanned aerial vehicles: An efficient approach for constrained computing platforms,” Reliability Engineering & System Safety, vol. 182, pp. 166–178, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0951832018301406
  28. J. Zhou, D. Liu, Y. Peng, and X. Peng, “Combined sparse bayesian learning strategy for remaining useful life forecasting of lithium-ion battery,” in 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, 2012, pp. 457–461. [Online]. Available: https://ieeexplore.ieee.org/document/6428946
  29. S. Lu, C. Yang, T. Wang, D. Liu, and Y. Peng, “Lithium-ion battery prognostics with fusion model of uncertainty integration based on bayesian model averaging,” in 2015 Prognostics and System Health Management Conference (PHM), 2015, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/7380048
  30. L. Zhao, Q. Li, and B. Suo, “Simulator assessment theory for remaining useful life prediction of lithium-ion battery under multiple uncertainties,” IEEE Access, vol. 8, pp. 71 447–71 459, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9064548
  31. S. Zhang, Z. Liu, and H. Su, “A bayesian mixture neural network for remaining useful life prediction of lithium-ion batteries,” IEEE Transactions on Transportation Electrification, vol. 8, no. 4, pp. 4708–4721, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9738999
  32. J. Zhao, L. Tian, L. Cheng, Y. Zhang, and C. Zhu, “Review on rul prediction methods for lithium-ion battery,” in 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 2022, pp. 1501–1505. [Online]. Available: https://ieeexplore.ieee.org/document/9949753
  33. Y. Zhu, Y. Shang, B. Duan, X. Gu, S. Li, and G. Chen, “A data-driven method for lithium-ion batteries remaining useful life prediction based on optimal hyperparameters,” in 2022 41st Chinese Control Conference (CCC), 2022, pp. 7388–7392. [Online]. Available: https://ieeexplore.ieee.org/document/9902792
  34. J. Zhou, D. Liu, Y. Peng, and X. Peng, “An optimized relevance vector machine with incremental learning strategy for lithium-ion battery remaining useful life estimation,” in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2013, pp. 561–565. [Online]. Available: https://ieeexplore.ieee.org/document/6555479
  35. X. Qin, Q. Zhao, H. Zhao, W. Feng, and X. Guan, “Prognostics of remaining useful life for lithium-ion batteries based on a feature vector selection and relevance vector machine approach,” in 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), 2017, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/7998297
  36. Y. Chen, C. Zhang, N. Zhang, X. Guo, H. Wang, and Y. Chen, “Cuckoo search based relevance vector machine with hybrid kernel for battery remaining useful life prediction,” in 2019 Prognostics and System Health Management Conference (PHM-Qingdao), 2019, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/8942856
  37. “A novel multistage support vector machine based approach for li ion battery remaining useful life estimation,” Applied Energy, vol. 159, pp. 285–297, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261915010557
  38. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities.” Proceedings of the National Academy of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554
  39. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, pp. 1735–80, 12 1997. [Online]. Available: https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
  40. K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation,” 06 2014. [Online]. Available: https://www.researchgate.net/publication/262877889_Learning_Phrase_Representations_using_RNN_Encoder-Decoder_for_Statistical_Machine_Translation
  41. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27.   Curran Associates, Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
  42. L. Gatys, A. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv, 08 2015. [Online]. Available: https://www.researchgate.net/publication/281312423_A_Neural_Algorithm_of_Artistic_Style
  43. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.   Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
  44. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in North American Chapter of the Association for Computational Linguistics, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:52967399
  45. B. Vachhani, C. Bhat, B. Das, and S. K. Kopparapu, “Deep autoencoder based speech features for improved dysarthric speech recognition,” 08 2017.
  46. J. Guo and Z. Li, “Prognostics of lithium ion battery using functional principal component analysis,” in 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), 2017, pp. 14–17. [Online]. Available: https://ieeexplore.ieee.org/document/7998299
  47. Y. Zhang, R. Xiong, H. He, and Z. Liu, “A lstm-rnn method for the lithuim-ion battery remaining useful life prediction,” in 2017 Prognostics and System Health Management Conference (PHM-Harbin), 2017, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/8079316
  48. L. Ren, L. Zhao, S. Hong, S. Zhao, H. Wang, and L. Zhang, “Remaining useful life prediction for lithium-ion battery: A deep learning approach,” IEEE Access, vol. 6, pp. 50 587–50 598, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8418374
  49. Y. Liu, G. Zhao, and X. Peng, “Deep learning prognostics for lithium-ion battery based on ensembled long short-term memory networks,” IEEE Access, vol. 7, pp. 155 130–155 142, 2019. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8815721
  50. S. Zhang, B. Zhai, X. Guo, K. Wang, N. Peng, and X. Zhang, “Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks,” Journal of Energy Storage, vol. 26, p. 100951, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352152X19307340
  51. D. Zhou, Z. Li, J. Zhu, H. Zhang, and L. Hou, “State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network,” IEEE Access, vol. 8, pp. 53 307–53 320, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9037249
  52. L. Ren, J. Dong, X. Wang, Z. Meng, L. Zhao, and M. J. Deen, “A data-driven auto-cnn-lstm prediction model for lithium-ion battery remaining useful life,” IEEE Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3478–3487, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9137406
  53. “State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network,” Journal of Power Sources, vol. 459, p. 228069, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378775320303724
  54. B. Zraibi, M. Mansouri, and S. E. Loukili, “Comparing deep learning methods to predict the remaining useful life of lithium-ion batteries,” Materials Today: Proceedings, vol. 62, pp. 6298–6304, 2022, international Congress of Chemical Engineering: News Innovations and Recent Applications. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785322022143
  55. D. Chen, W. Hong, and X. Zhou, “Transformer network for remaining useful life prediction of lithium-ion batteries,” IEEE Access, vol. 10, pp. 19 621–19 628, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9714323
  56. G. Shinde, R. Mohapatra, P. Krishan, and S. Sengupta, “De-sate: Denoising self-attention transformer encoders for li-ion battery health prognostics,” 2023. [Online]. Available: https://arxiv.org/abs/2310.00023
  57. Y. Wu, W. Li, Y. Wang, and K. Zhang, “Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter,” IEEE Access, vol. 7, pp. 54 843–54 854, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8698866
  58. J. Liu, A. Saxena, K. Goebel, B. Saha, and W. Wang, “An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries,” Annual Conference of the PHM Society, vol. 2, no. 1, 2010. [Online]. Available: https://papers.phmsociety.org/index.php/phmconf/article/view/1896
  59. Y. Zhang, R. Xiong, H. He, and M. G. Pecht, “Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 5695–5705, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8289406
  60. B. Xiao, Y. Liu, and B. Xiao, “Accurate state-of-charge estimation approach for lithium-ion batteries by gated recurrent unit with ensemble optimizer,” IEEE Access, vol. PP, pp. 1–1, 04 2019. [Online]. Available: https://www.researchgate.net/publication/332650682_Accurate_State-of-Charge_Estimation_Approach_for_Lithium-Ion_Batteries_by_Gated_Recurrent_Unit_With_Ensemble_Optimizer
  61. Z. Shi and A. Chehade, “A dual-lstm framework combining change point detection and remaining useful life prediction,” Reliability Engineering & System Safety, vol. 205, p. 107257, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0951832020307572
  62. J. S. Goud, R. Kalpana, and B. Singh, “Modeling and estimation of remaining useful life of single cell li-ion battery,” in 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2018, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/document/8707554
  63. G. Ouyang, G. Whang, E. MacInnis, H. Ren, H. Sun, R. Irwin, B. Dunn, and S. S. Iyer, “Fabrication of flexible li-ion battery electrodes using ”battlets” approach with ionic liquid electrolyte for powering wearable devices,” in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), 2022, pp. 780–785. [Online]. Available: https://ieeexplore.ieee.org/document/9816565
  64. N. V. Sang and W. Choi, “A non-isolated boost charger for the li-ion battery suitable for fuel cell powered laptop computer,” in Proceedings of The 7th International Power Electronics and Motion Control Conference, vol. 2, 2012, pp. 946–951. [Online]. Available: https://ieeexplore.ieee.org/document/6258922
  65. I. R. S. Makin, H. Jabs, T. D. Mast, and L. J. Radziemski, “Demonstration of healthcare-specific li-ion battery charging using ultrasound power delivery,” in 2021 IEEE Wireless Power Transfer Conference (WPTC), 2021, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/9458228
  66. M. Nawaz, J. Ahmed, and M. S. Khan, “Cell balancing techniques for li-ion batteries in healthcare devices,” in 2022 Global Conference on Wireless and Optical Technologies (GCWOT), 2022, pp. 1–7. [Online]. Available: https://ieeexplore.ieee.org/document/9772908
  67. W. V. Katell Thielemann. (2023) Market guide for cps protection platforms. [Online]. Available: https://www.gartner.com/doc/reprints?id=1-2EMHBMZW&ct=230803&st=sb
  68. M. Dokgöz and Y. Yaslan, “A comparison of machine learning algorithms on lithium-ion battery cycle life prediction,” in 2021 6th International Conference on Computer Science and Engineering (UBMK), 2021, pp. 498–502. [Online]. Available: https://ieeexplore.ieee.org/document/9558946
  69. Meng-Wei, Min-Ye, Qiao-Wang, Gaoqi-Lian, and Jiabo-Li, “Remaining useful life indirect prediction of lithium-ion batteries based on gaussian mixture regression,” in 2021 3rd International Conference on Industrial Artificial Intelligence (IAI), 2021, pp. 1–5. [Online]. Available: https://www.researchgate.net/publication/356674703_Remaining_Useful_Life_Indirect_Prediction_of_Lithium-ion_Batteries_Based_on_Gaussian_Mixture_Regression
  70. Y. Xing, E. W. Ma, K.-L. Tsui, and M. Pecht, “An ensemble model for predicting the remaining useful performance of lithium-ion batteries,” Microelectronics Reliability, vol. 53, no. 6, pp. 811–820, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0026271412005227
  71. K. Sundararaju, S. Jagadeesh, N. Madhumithra, and K. Manikandan, “Machine learning based soc estimation for lithium-ion battery in electric vehicle,” in 2023 9th International Conference on Electrical Energy Systems (ICEES), 2023, pp. 85–88. [Online]. Available: https://ieeexplore.ieee.org/document/10110259
  72. S. Shete, P. Jog, R. K. Kumawat, and D. Palwalia, “Battery management system for soc estimation of lithium-ion battery in electric vehicle: A review,” in 2021 6th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), vol. 6, 2021, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/9703752
  73. R. Gao, X. Li, and H. Yu, “Cycle life prediction method of lithium ion batteries for new energy electric vehicles,” in 2021 International Conference of Social Computing and Digital Economy (ICSCDE), 2021, pp. 108–112. [Online]. Available: https://ieeexplore.ieee.org/document/9551361
  74. G. Livint, F. A.Rusu, and C. G. Pintilie, “Algorithm for estimating soc of lithium-ion batteries used for electric vehicles,” in 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2021, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/9425238
  75. Q. Sun, H. Lv, S. Wang, S. Gao, and K. Wei, “Optimized state of charge estimation of lithium-ion battery in smes/battery hybrid energy storage system for electric vehicles,” IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1–6, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9462449
  76. A. Samanta, A. Huynh, N. Shrestha, and S. Williamson, “Combined data driven and online impedance measurement-based lithium-ion battery state of health estimation for electric vehicle battery management systems,” in 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), 2023, pp. 862–866. [Online]. Available: https://ieeexplore.ieee.org/document/10131471
  77. K. M. Amanathulla and A. S. Pillai, “An extensive comparison of state of charge estimation of lithium ion battery — towards predictive intelligent battery management system for electric vehicles,” in 2020 International Conference on Futuristic Technologies in Control Systems & Renewable Energy (ICFCR), 2020, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/document/9249992
  78. B. Wu and F. Qin, “A mstukf-based technique for soc estimation of li-ion batteries for electric vehicles,” in 2022 Asian Conference on Frontiers of Power and Energy (ACFPE), 2022, pp. 557–561. [Online]. Available: https://ieeexplore.ieee.org/document/9952275
  79. M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker, “State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations,” IEEE Access, vol. 6, pp. 19 362–19 378, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8320763
  80. C. Lin, X. Zhang, R. Xiong, and F. Zhou, “A novel approach to state of charge estimation using extended kalman filtering for lithium-ion batteries in electric vehicles,” in 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/6941260
  81. Y.-h. Xie, H.-j. Yu, and C.-d. Li, “Present situation and prospect of lithium-ion traction batteries for electric vehicles domestic and overseas standards,” in 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6940614
  82. R. Xiong, Y. Zhang, J. Wang, H. He, S. Peng, and M. Pecht, “Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4110–4121, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8430563
  83. C. C. Lee, P. Hu, C. Y. Li, and S. H. Wang, “State of charge estimation of the lithium-ion battery based on neural network in electric vehicles,” in 2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA), 2022, pp. 1–3. [Online]. Available: https://ieeexplore.ieee.org/document/9971063
  84. D. Ma and X. Qin, “Residual life prediction of lithium batteries based on data mining,” Comput Intell Neurosci, vol. 2022, p. 4520160, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359824/
  85. A. Gökçen, A. Gökçen, and S. Şahin, “Prediction of Li-Ion Battery Discharge Patterns in IoT Devices Under Random Use Via Machine Learning Algorithms,” The Computer Journal, vol. 66, no. 6, pp. 1541–1548, 07 2022. [Online]. Available: https://doi.org/10.1093/comjnl/bxac089
  86. Y. S. Jain, A. D. Veer, G. S. Sawant, Y. R. Jain, and S. S. Udmale, “Novel statistical analysis approach for remaining useful life prediction of lithium-ion battery,” in 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2021, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9579982
  87. Y. Zhang, C. Zhao, and S. Zhu, “State-of-charge estimation of li-ion batteries based on a hybrid model using nonlinear autoregressive exogenous neural networks,” in 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2018, pp. 772–777. [Online]. Available: https://ieeexplore.ieee.org/document/8566627
  88. A. Namdari and Z. S. Li, “An entropy-based approach for modeling lithium-ion battery capacity fade,” in 2020 Annual Reliability and Maintainability Symposium (RAMS), 2020, pp. 1–7. [Online]. Available: https://ieeexplore.ieee.org/document/9153698
  89. M. Zhang, Z. S. Li, and Z. Liu, “Lithium-ion batteries capacity fading prediction based on sample entropy and lstm,” in 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai), 2022, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/document/9941844
  90. A. I. Ilieș, G. Chindriș, D. Pitică, and R. Jano, “Experimental estimation of the state of health of lithium-ion batteries under different conditions,” in 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), 2021, pp. 165–168. [Online]. Available: https://ieeexplore.ieee.org/document/9663419
  91. J. Liu, A. Saxena, K. Goebel, B. Saha, and W. Wang, “An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries,” Annual Conference of the Prognostics and Health Management Society, PHM 2010, 01 2010.
  92. C. Hu, H. Ye, G. Jain, and C. Schmidt, “Remaining useful life assessment of lithium-ion batteries in implantable medical devices,” Journal of Power Sources, vol. 375, pp. 118–130, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378775317315239
  93. S. Mohsen, A. Zekry, M. Abouelatta, and K. Youssef, “A self-powered wearable sensor node for iot healthcare applications,” in 2020 8th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC), 2020, pp. 70–73. [Online]. Available: https://ieeexplore.ieee.org/document/9355925?denied=
  94. D. Spillman and E. Takeuchi, “Lithium ion batteries for medical devices,” in Fourteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.99TH8371), 1999, pp. 203–208. [Online]. Available: https://ieeexplore.ieee.org/document/795991
  95. A. E. Pavlov, D. V. Telyshev, and I. V. Nesterenko, “Calibration module for battery management system of medical devices,” in 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2019, pp. 2249–2252. [Online]. Available: https://ieeexplore.ieee.org/document/8656710
  96. A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T. Januschowski, D. C. Maddix, S. Rangapuram, D. Salinas, J. Schulz, L. Stella, A. C. Türkmen, and Y. Wang, “Gluonts: Probabilistic time series models in python,” 2019. [Online]. Available: https://arxiv.org/abs/1906.05264
  97. L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning: concepts, cnn architectures, challenges, applications, future directions,” Journal of Big Data, vol. 8, no. 1, p. 53, 03/31 2021. [Online]. Available: https://doi.org/10.1186/s40537-2021-00444-8
  98. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014. [Online]. Available: https://arxiv.org/abs/1406.2661v1
  99. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. [Online]. Available: https://ieeexplore.ieee.org/document/7780459
  100. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0893608089900208
  101. G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme learning machines: A review,” Neural Networks, vol. 61, pp. 32–48, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0893608014002214
  102. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ser. ICML’15.   JMLR.org, 2015, p. 448–456. [Online]. Available: https://dl.acm.org/doi/10.5555/3045118.3045167
  103. B. Lim, S. O. Arık, N. Loeff, and T. Pfister, “Temporal fusion transformers for interpretable multi-horizon time series forecasting,” International Journal of Forecasting, vol. 37, no. 4, pp. 1748–1764, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169207021000637
  104. S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17.   Red Hook, NY, USA: Curran Associates Inc., 2017, p. 4768–4777. [Online]. Available: https://dl.acm.org/doi/10.5555/3295222.3295230
  105. M. Mundt, Y. Hong, I. Pliushch, and V. Ramesh, “A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning,” Neural Networks, vol. 160, pp. 306–336, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S089360802300014X
  106. G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0893608019300231
  107. M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”: Explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’16.   New York, NY, USA: Association for Computing Machinery, 2016, p. 1135–1144. [Online]. Available: https://doi.org/10.1145/2939672.2939778
  108. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” 2022. [Online]. Available: https://arxiv.org/abs/2112.10752
  109. I. H. Sarker, “Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions,” SN Computer Science, vol. 2, no. 6, p. 420, August 18 2021. [Online]. Available: https://doi.org/10.1007/s42979-021-00815-1
  110. S. Sengupta, S. Basak, P. Saikia, S. Paul, V. Tsalavoutis, F. Atiah, V. Ravi, and A. Peters, “A review of deep learning with special emphasis on architectures, applications and recent trends,” Knowledge-Based Systems, vol. 194, p. 105596, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S095070512030071X
  111. J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–117, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0893608014002135
  112. I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” 2014. [Online]. Available: https://arxiv.org/abs/1409.3215
  113. A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep learning in spiking neural networks,” Neural Networks, vol. 111, pp. 47–63, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0893608018303332
  114. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?” 2014. [Online]. Available: https://arxiv.org/abs/1411.1792
  115. H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” 2021. [Online]. Available: https://arxiv.org/abs/2012.07436
  116. F. Ahmadzadeh and J. Lundberg, “Remaining useful life estimation: review,” International Journal of System Assurance Engineering and Management, vol. 5, no. 4, pp. 461–474, December 01 2014. [Online]. Available: https://doi.org/10.1007/s13198-013-0195-0
  117. A. A. Balkema and L. de Haan, “Residual Life Time at Great Age,” The Annals of Probability, vol. 2, no. 5, pp. 792 – 804, 1974. [Online]. Available: https://doi.org/10.1214/aop/1176996548
  118. D. Banjevic, “Remaining useful life in theory and practice,” Metrika, vol. 69, no. 2, pp. 337–349, March 2009. [Online]. Available: https://doi.org/10.1007/s00184-008-0220-5
  119. N. Costa and L. Sánchez, “Variational encoding approach for interpretable assessment of remaining useful life estimation,” Reliability Engineering & System Safety, vol. 222, p. 108353, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0951832022000321
  120. C. Ferreira and G. Gonçalves, “Remaining useful life prediction and challenges: A literature review on the use of machine learning methods,” Journal of Manufacturing Systems, vol. 63, pp. 550–562, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0278612522000796
  121. H. Guo, H. Zhu, J. Wang, P. Vadakkcpat, W. Ho, and T. Lee, “Masked self-supervision for remaining useful lifetime prediction in machine tools,” 07 2022, pp. 353–358. [Online]. Available: https://www.researchgate.net/publication/366340099_Masked_Self-Supervision_for_Remaining_Useful_Lifetime_Prediction_in_Machine_Tools
  122. A. Javanmardi and E. Hüllermeier, “Conformal prediction intervals for remaining useful lifetime estimation,” 2022. [Online]. Available: https://arxiv.org/abs/2212.14612
  123. T. Khawaja, G. Vachtsevanos, and B. Wu, “Reasoning about uncertainty in prognosis: a confidence prediction neural network approach,” in NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society, 2005, pp. 7–12. [Online]. Available: https://ieeexplore.ieee.org/document/1548498
  124. R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiech, and N. Zerhouni, “Direct remaining useful life estimation based on support vector regression,” IEEE Transactions on industrial electronics, vol. 64, no. 3, pp. 2276–2285, 2016. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7726039
  125. T. Krokotsch, M. Knaak, and C. Gühmann, “Improving semi-supervised learning for remaining useful lifetime estimation through self-supervision,” 2021. [Online]. Available: https://arxiv.org/abs/2108.08721
  126. B. Saha, K. Goebel, and J. Christophersen, “Comparison of prognostic algorithms for estimating remaining useful life of batteries,” Transactions of the Institute of Measurement and Control, vol. 31, no. 3-4, pp. 293–308, 2009. [Online]. Available: https://journals.sagepub.com/doi/10.1177/0142331208092030
  127. L. Sánchez, N. Costa, J. Otero, D. Anseán, and I. Couso, “Learning remaining useful life with incomplete health information: A case study on battery deterioration assessment,” Array, vol. 20, p. 100321, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590005623000462
  128. S. Sankararaman and K. Goebel, “Why is the remaining useful life prediction uncertain?” in Annual Conference of the PHM Society, vol. 5, no. 1, 2013. [Online]. Available: https://doi.org/10.36001/phmconf.2013.v5i1.2263
  129. X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life estimation - A review on the statistical data driven approaches,” European Journal of Operational Research, vol. 213, no. 1, pp. 1–14, August 2011. [Online]. Available: https://ideas.repec.org/a/eee/ejores/v213y2011i1p1-14.html
  130. Z. Tian, “An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring,” Journal of Intelligent Manufacturing, vol. 23, no. 2, pp. 227–237, April 2012. [Online]. Available: https://doi.org/10.1007/s10845-009-0356-9
  131. C. Okoh, R. Roy, J. Mehnen, and L. Redding, “Overview of remaining useful life prediction techniques in through-life engineering services,” Procedia CIRP, vol. 16, pp. 158–163, 2014, product Services Systems and Value Creation. Proceedings of the 6th CIRP Conference on Industrial Product-Service Systems. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212827114001140
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets