Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds for the Large Deviations of Selberg's Central Limit Theorem (2403.19803v2)

Published 28 Mar 2024 in math.NT and math.PR

Abstract: Let $\delta>0$ and $\sigma=\frac{1}{2}+\tfrac{\delta}{\log T}$. We prove that, for any $\alpha>0$ and $V\sim \alpha\log \log T$ as $T\to\infty$, $\frac{1}{T}\text{meas}\big{t\in [T,2T]: \log|\zeta(\sigma+\rm{i} \tau)|>V\big}\geq C_\alpha(\delta)\int_V\infty \frac{e{-y2/\log\log T}}{\sqrt{\pi\log\log T}} \rm{d} y,$ where $\delta$ is large enough depending on $\alpha$. The result is unconditional on the Riemann hypothesis. As a consequence, we recover the sharp lower bound for the moments on the critical line proved by Heap & Soundararajan and Radziwi{\l}{\l} & Soundararajan. The constant $C_\alpha(\delta)$ is explicit and is compared to the one conjectured by Keating & Snaith for the moments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. L.-P. Arguin and E. Bailey. Large Deviation Estimates of Selberg’s Central Limit Theorem and Applications. International Mathematics Research Notices, 2023(23):20574–20612, 07 2023.
  2. Maximum of the Riemann zeta function on a short interval of the critical line. Comm. Pure Appl. Math., 72(3):500–535, 2019.
  3. The Fyodorov-Hiary-Keating Conjecture. I. Preprint arXiv:2007.00988, 2020.
  4. The Fyodorov-Hiary-Keating Conjecture. II. Preprint arXiv:2307.00982, 2023.
  5. Moments of the Riemann zeta function on short intervals of the critical line. Ann. Probab., 49(6):3106–3141, 2021.
  6. High moments of the Riemann zeta-function. duke math. j., 107(3):577–604, 2001.
  7. A. Dobner. Large deviations of the argument of the Riemann zeta function. Preprint arXiv:2101.01747, to appear in Mathematika, 2024.
  8. R. M. Gabriel. Some Results Concerning the Integrals of Moduli of Regular Functions Along Certain Curves. J. London Math. Soc., 2(2):112–117, 1927.
  9. Sharp upper bounds for fractional moments of the Riemann zeta function. Q. J. Math., 70(4):1387–1396, 2019.
  10. W. Heap and K. Soundararajan. Lower bounds for moments of zeta and L𝐿Litalic_L-functions revisited. Mathematika, 68(1):1–14, 2022.
  11. A. E. Ingham. A Note on Fourier Transforms. Journal of the London Mathematical Society, s1-9(1):29–32, 1934.
  12. A. Ivic. Riemann zeta-function. A Wiley-Interscience Publication. John Wiley & Sons, New York, 1985. (reissue, Dover, Mineola, New York, 2003).
  13. D. Koukoulopoulos. The distribution of prime numbers, volume 203 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, [2019] ©2019.
  14. Random matrix theory and ζ⁢(1/2+i⁢t)𝜁12𝑖𝑡\zeta(1/2+it)italic_ζ ( 1 / 2 + italic_i italic_t ). Communications in Mathematical Physics, 214(1):57–89, 2000.
  15. I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
  16. Hilbert’s inequality. J. London Math. Soc. (2), 8:73–82, 1974.
  17. M. Radziwiłł and K. Soundararajan. Continuous lower bounds for moments of zeta and L𝐿Litalic_L-functions. Mathematika, 59(1):119–128, 2013.
  18. M. Radziwiłł and K. Soundararajan. Selberg’s central limit theorem for log⁡|ζ⁢(1/2+i⁢t)|𝜁12𝑖𝑡\log{|\zeta(1/2+it)|}roman_log | italic_ζ ( 1 / 2 + italic_i italic_t ) |. Enseign. Math., 63(1-2):1–19, 2017.
  19. K. Soundararajan. Moments of the Riemann zeta function. Ann. of Math. (2), 170(2):981–993, 2009.
  20. R. Vanlalngaia. Explicit Mertens Sums. Integers, 17:A11, 2017.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com