2000 character limit reached
Lower Bounds for the Large Deviations of Selberg's Central Limit Theorem (2403.19803v2)
Published 28 Mar 2024 in math.NT and math.PR
Abstract: Let $\delta>0$ and $\sigma=\frac{1}{2}+\tfrac{\delta}{\log T}$. We prove that, for any $\alpha>0$ and $V\sim \alpha\log \log T$ as $T\to\infty$, $\frac{1}{T}\text{meas}\big{t\in [T,2T]: \log|\zeta(\sigma+\rm{i} \tau)|>V\big}\geq C_\alpha(\delta)\int_V\infty \frac{e{-y2/\log\log T}}{\sqrt{\pi\log\log T}} \rm{d} y,$ where $\delta$ is large enough depending on $\alpha$. The result is unconditional on the Riemann hypothesis. As a consequence, we recover the sharp lower bound for the moments on the critical line proved by Heap & Soundararajan and Radziwi{\l}{\l} & Soundararajan. The constant $C_\alpha(\delta)$ is explicit and is compared to the one conjectured by Keating & Snaith for the moments.
- L.-P. Arguin and E. Bailey. Large Deviation Estimates of Selberg’s Central Limit Theorem and Applications. International Mathematics Research Notices, 2023(23):20574–20612, 07 2023.
- Maximum of the Riemann zeta function on a short interval of the critical line. Comm. Pure Appl. Math., 72(3):500–535, 2019.
- The Fyodorov-Hiary-Keating Conjecture. I. Preprint arXiv:2007.00988, 2020.
- The Fyodorov-Hiary-Keating Conjecture. II. Preprint arXiv:2307.00982, 2023.
- Moments of the Riemann zeta function on short intervals of the critical line. Ann. Probab., 49(6):3106–3141, 2021.
- High moments of the Riemann zeta-function. duke math. j., 107(3):577–604, 2001.
- A. Dobner. Large deviations of the argument of the Riemann zeta function. Preprint arXiv:2101.01747, to appear in Mathematika, 2024.
- R. M. Gabriel. Some Results Concerning the Integrals of Moduli of Regular Functions Along Certain Curves. J. London Math. Soc., 2(2):112–117, 1927.
- Sharp upper bounds for fractional moments of the Riemann zeta function. Q. J. Math., 70(4):1387–1396, 2019.
- W. Heap and K. Soundararajan. Lower bounds for moments of zeta and L𝐿Litalic_L-functions revisited. Mathematika, 68(1):1–14, 2022.
- A. E. Ingham. A Note on Fourier Transforms. Journal of the London Mathematical Society, s1-9(1):29–32, 1934.
- A. Ivic. Riemann zeta-function. A Wiley-Interscience Publication. John Wiley & Sons, New York, 1985. (reissue, Dover, Mineola, New York, 2003).
- D. Koukoulopoulos. The distribution of prime numbers, volume 203 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, [2019] ©2019.
- Random matrix theory and ζ(1/2+it)𝜁12𝑖𝑡\zeta(1/2+it)italic_ζ ( 1 / 2 + italic_i italic_t ). Communications in Mathematical Physics, 214(1):57–89, 2000.
- I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
- Hilbert’s inequality. J. London Math. Soc. (2), 8:73–82, 1974.
- M. Radziwiłł and K. Soundararajan. Continuous lower bounds for moments of zeta and L𝐿Litalic_L-functions. Mathematika, 59(1):119–128, 2013.
- M. Radziwiłł and K. Soundararajan. Selberg’s central limit theorem for log|ζ(1/2+it)|𝜁12𝑖𝑡\log{|\zeta(1/2+it)|}roman_log | italic_ζ ( 1 / 2 + italic_i italic_t ) |. Enseign. Math., 63(1-2):1–19, 2017.
- K. Soundararajan. Moments of the Riemann zeta function. Ann. of Math. (2), 170(2):981–993, 2009.
- R. Vanlalngaia. Explicit Mertens Sums. Integers, 17:A11, 2017.