Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

On the eigenvalue problem for a bulk/surface elliptic system (2403.19759v2)

Published 28 Mar 2024 in math.AP

Abstract: The paper addresses the doubly elliptic eigenvalue problem $$\begin{cases} -\Delta u=\lambda u \qquad &\text{in $\Omega$,}\ u=0 &\text{on $\Gamma_0$,}\ -\Delta_\Gamma u +\partial_\nu u =\lambda u\qquad &\text{on $\Gamma_1$,} \end{cases} $$ where $\Omega$ is a bounded open subset of $\mathbb{R}N$ ($N\ge 2$) with $C1$ boundary $\Gamma=\Gamma_0\cup\Gamma_1$, $\Gamma_0\cap\Gamma_1=\emptyset$, $\Gamma_1$ being nonempty and relatively open on $\Gamma$. Moreover $\mathcal{H}{N-1}(\overline{\Gamma}_0\cap\overline{\Gamma}_1)=0$ and $\mathcal{H}{N-1}(\Gamma_0)>0$. We recognize that $L2(\Omega)\times L2(\Gamma_1)$ admits a Hilbert basis of eigenfunctions of the problem and we describe the eigenvalues. Moreover, when $\Gamma$ is at least $C2$ and $\overline{\Gamma}_0\cap\overline{\Gamma}_1=\emptyset$, we give several qualitative properties of the eigenfunctions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)