Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logic and Languages of Higher-Dimensional Automata (2403.19526v1)

Published 28 Mar 2024 in cs.FL and cs.LO

Abstract: In this paper we study finite higher-dimensional automata (HDAs) from the logical point of view. Languages of HDAs are sets of finite bounded-width interval pomsets with interfaces (iiPoms<=k) closed under order extension. We prove that languages of HDAs are MSO-definable. For the converse, we show that the order extensions of MSO-definable sets of iiPoms<=k are languages of HDAs. As a consequence, unlike the case of all pomsets, order extension of MSO-definable sets of iiPoms<=k is also MSO-definable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Closure and decision properties for higher-dimensional automata. In Erika Ábrahám, Clemens Dubslaff, and Silvia Lizeth Tapia Tarifa, editors, ICTAC, volume 14446 of Lecture Notes in Computer Science, pages 295–312. Springer, 2023.
  2. Nicolas Bedon. Logic and branching automata. Log. Methods Comput. Sci., 11(4), 2015.
  3. J. Richard Büchi. Weak second order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.
  4. J. Richard Büchi. On a decision method in restricted second order arithmetic. In Ernest Nagel, Patrick Suppes, and Alfred Tarski, editors, LMPS’60, pages 1–11. Stanford University Press, 1962.
  5. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12–75, 1990.
  6. John Doner. Tree acceptors and some of their applications. Journal of Computer and System Sciences, 4(5):406–451, 1970.
  7. Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions of the American Mathematical Society, 98:21–52, 1961.
  8. Languages of higher-dimensional automata. Mathematical Structures in Computer Science, 31(5):575–613, 2021.
  9. A Kleene theorem for higher-dimensional automata. In Bartek Klin, Sławomir Lasota, and Anca Muscholl, editors, CONCUR, volume 243 of Leibniz International Proceedings in Informatics, pages 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
  10. Posets with interfaces as a model for concurrency. Information and Computation, 285(B):104914, 2022.
  11. A Myhill-Nerode theorem for higher-dimensional automata. In Luís Gomes and Robert Lorenz, editors, PETRI NETS, volume 13929 of Lecture Notes in Computer Science, pages 167–188. Springer, 2023.
  12. Pomset languages of finite step transition systems. In Giuliana Franceschinis and Karsten Wolf, editors, PETRI NETS, volume 5606 of Lecture Notes in Computer Science, pages 83–102. Springer, 2009.
  13. Peter C. Fishburn. Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley, 1985.
  14. A Kleene theorem and model checking algorithms for existentially bounded communicating automata. Information and Computation, 204(6):920–956, 2006.
  15. Jan Grabowski. On partial languages. Fundamentae Informatica, 4(2):427, 1981.
  16. Operational semantics, interval orders and sequences of antichains. Fundamentae Informatica, 169(1-2):31–55, 2019.
  17. Dietrich Kuske. Infinite series-parallel posets: Logic and languages. In ICALP, volume 1853 of Lecture Notes in Computer Science, pages 648–662. Springer, 2000.
  18. Pomsets for local trace languages. J. Autom. Lang. Comb., 7(2):187–224, 2002.
  19. Vaughan R. Pratt. Modeling concurrency with geometry. In POPL, pages 311–322, New York City, 1991. ACM Press.
  20. Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society, 141:1–35, 1969.
  21. Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1968.
  22. W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume III, pages 389–455. Springer, 1997.
  23. Wolfgang Thomas. On logical definability of trace languages. In Algebraic and Syntactic Methods in Computer Science (ASMICS), Report TUM-I9002, Technical University of Munich, pages 172–182, 1990.
  24. Boris A. Trakhtenbrot. Finite automata and monadic second order logic. Siberian Mathematical Journal, 3:103–131, 1962. In Russian; English translation in Amer. Math. Soc. Transl. 59, 1966, 23–55.
  25. Rob J. van Glabbeek. Bisimulations for higher dimensional automata. Email message, June 1991. http://theory.stanford.edu/~rvg/hda.
  26. Norbert Wiener. A contribution to the theory of relative position. Proceedings of the Cambridge Philosophical Society, 17:441–449, 1914.
  27. Wiesław Zielonka. Notes on finite asynchronous automata. RAIRO – Informatique Théorique et Applications, 21(2):99–135, 1987.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com