Numerical approximations of a lattice Boltzmann scheme with a family of partial differential equations (2403.19231v3)
Abstract: In this contribution, we address the numerical solutions of high-order asymptotic equivalent partial differential equations with the results of a lattice Boltzmann scheme for an inhomogeneous advection problem in one spatial dimension. We first derive a family of equivalent partial differential equations at various orders, and we compare the lattice Boltzmann experimental results with a spectral approximation of the differential equations. For an unsteady situation, we show that the initialization scheme at a sufficiently high order of the microscopic moments plays a crucial role to observe an asymptotic error consistent with the order of approximation. For a stationary long-time limit, we observe that the measured asymptotic error converges with a reduced order of precision compared to the one suggested by asymptotic analysis.
- A. Augier, F. Dubois, L. Gouarin, B. Graille, “Linear lattice Boltzmann schemes for Acoustic: parameter choices and isotropy properties”, Computers and Mathematics with Applications, volume 65, pages 845-863, 2013.
- A. Augier, F. Dubois, B. Graille, P. Lallemand, “On rotational invariance of lattice Boltzmann schemes”, Computers and Mathematics with Applications, volume 67, pages 239-255, 2014.
- T. Bellotti, B. Graille, M. Massot, “Finite difference formulation of any lattice Boltzmann scheme”, Numerische Mathematik, volume 152, pages 1-40, 2022.
- J. E. Broadwell, “Shock structure in a simple discrete velocity gas”, Physics of Fluids, volume 7, pages 1243-1247, 1964.
- S. Chen, G. D. Doolen, “Lattice Boltzmann Method for Fluid Flows”, Annual Review of Fluid Mechanics, vol. 30, p. 329-364, 1998.
- F. Dubois, “Equivalent partial differential equations of a lattice Boltzmann scheme”, Computers and Mathematics with Applications, vol. 55, p. 1441-1449, 2008.
- F. Dubois, “Third order equivalent equation of lattice Boltzmann scheme”, Discrete and Continuous Dynamical Systems, A, vol. 23, p. 221-248, 2009.
- F. Dubois, “Nonlinear fourth-order Taylor expansion of lattice Boltzmann schemes”, Asymptotic Analysis, volune 127, pages 297-337, 2022.
- F. Dubois, B.M. Boghosian, P. Lallemand, “General fourth-order Chapman–Enskog expansion of lattice Boltzmann schemes”, Computers and Fluids, volume 266, article 106036, 11 pages, 2023.
- F. Dubois, P. Lallemand, “Towards higher order lattice Boltzmann schemes”, Journal of Statistical Mechanics, Theory and Experiment, P06006, 2009.
- F. Dubois, P. Lallemand, “Quartic Parameters for Acoustic Applications of Lattice Boltzmann Scheme”, Computers and Mathematics with Applications, volume 61, p. 3404-3416, 2011.
- F. Dubois, P. Lallemand, “On Single Distribution Lattice Boltzmann Schemes for the Approximation of Navier Stokes Equations”, Communications in Computational Physics, volume 34, pages 613-671, 2023.
- R. Gatignol, “The hydrodynamical description for a discrete velocity model of gas”, Complex systems, volume 1, pages 709-725, 1987.
- M. Hénon, “Viscosity of a lattice gas”, Complex systems, volume 1, pages 763-789, 1987.
- D. d’Humières, “Generalized lattice-Boltzmann equations”, in Rarefied Gas Dynamics: Theory and Simulations, volume 159 of AIAA Progress in Astronautics and Aeronautics, pages 450-458, 1992.
- D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo, “Multiple-relaxation-time lattice Boltzmann models in three dimensions”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 15, pages 437-451, 2002.
- D. d’Humières, I. Ginzburg, “Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to “magic” collision numbers”, Computers And Mathematics with Applications, volume 58, pages 823-840, 2009.
- P. Lallemand, L.-S. Luo, “Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability”, Physical Review E, volume 61, p. 6546-6562, 2000.
- R. Mei, L.-S. Luo, P. Lallemand, D. d’Humières, “Consistent initial conditions for lattice Boltzmann simulations”, Computers and Fluids, volume 35, pages 855-862, 2006.
- H. Otomo, B. M. Boghosian, F. Dubois, “Two complementary lattice-Boltzmann-based analyses for nonlinear systems”, Physica A, volume 486, pages 1000-1011, 2017.
- Y. H. Qian, Y. Zhou, “On higher order dynamics in lattice-based models using Chapman-Enskog method”, Physical Review E, vol. 61, p. 2103-2106, 2000.