Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Faster Algorithm for Pigeonhole Equal Sums (2403.19117v1)

Published 28 Mar 2024 in cs.DS

Abstract: An important area of research in exact algorithms is to solve Subset-Sum-type problems faster than meet-in-middle. In this paper we study Pigeonhole Equal Sums, a total search problem proposed by Papadimitriou (1994): given $n$ positive integers $w_1,\dots,w_n$ of total sum $\sum_{i=1}n w_i < 2n-1$, the task is to find two distinct subsets $A, B \subseteq [n]$ such that $\sum_{i\in A}w_i=\sum_{i\in B}w_i$. Similar to the status of the Subset Sum problem, the best known algorithm for Pigeonhole Equal Sums runs in $O*(2{n/2})$ time, via either meet-in-middle or dynamic programming (Allcock, Hamoudi, Joux, Klingelh\"{o}fer, and Santha, 2022). Our main result is an improved algorithm for Pigeonhole Equal Sums in $O*(2{0.4n})$ time. We also give a polynomial-space algorithm in $O*(2{0.75n})$ time. Unlike many previous works in this area, our approach does not use the representation method, but rather exploits a simple structural characterization of input instances with few solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Classical and quantum algorithms for variants of subset-sum via dynamic programming. In 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://arxiv.org/abs/2111.07059, doi:10.4230/LIPIcs.ESA.2022.6.
  2. Subset sum in the absence of concentration. In 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 48–61. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.48.
  3. Dense subset sum may be the hardest. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS), volume 47 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.13.
  4. Sharper upper bounds for unbalanced uniquely decodable code pairs. IEEE Trans. Inf. Theory, 64(2):1368–1373, 2018. doi:10.1109/TIT.2017.2688378.
  5. Reductions in PPP. Inf. Process. Lett., 145:48–52, 2019. doi:10.1016/j.ipl.2018.12.009.
  6. Faster space-efficient algorithms for subset sum, k-sum, and related problems. SIAM J. Comput., 47(5):1755–1777, 2018. doi:10.1137/17M1158203.
  7. Element distinctness, frequency moments, and sliding windows. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 290–299, 2013. doi:10.1109/FOCS.2013.39.
  8. Improved generic algorithms for hard knapsacks. In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages 364–385. Springer, 2011. doi:10.1007/978-3-642-20465-4_21.
  9. Improved classical and quantum algorithms for subset-sum. In Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume 12492 of Lecture Notes in Computer Science, pages 633–666. Springer, 2020. doi:10.1007/978-3-030-64834-3_22.
  10. Efficient sampling methods for discrete distributions. Algorithmica, 79(2):484–508, 2017. doi:10.1007/S00453-016-0205-0.
  11. Truly low-space element distinctness and subset sum via pseudorandom hash functions. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1661–1678, 2022. doi:10.1137/1.9781611977073.67.
  12. Average-case subset balancing problems. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 743–778. SIAM, 2022. doi:10.1137/1.9781611977073.33.
  13. Subset sum in time 2n/2n/2{}^{\mbox{n/2}}start_FLOATSUPERSCRIPT n/2 end_FLOATSUPERSCRIPT / poly(n). In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA, volume 275 of LIPIcs, pages 39:1–39:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.APPROX/RANDOM.2023.39.
  14. Computing partitions with applications to the knapsack problem. Journal of the ACM, 21(2):277–292, 1974. doi:10.1145/321812.321823.
  15. New generic algorithms for hard knapsacks. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 235–256. Springer, 2010. doi:10.1007/978-3-642-13190-5_12.
  16. Time-space tradeoffs for element distinctness and set intersection via pseudorandomness. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 5243–5281. SIAM, 2023. doi:10.1137/1.9781611977554.ch190.
  17. Equal-subset-sum faster than the meet-in-the-middle. In 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 73:1–73:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.73.
  18. Jesper Nederlof. A short note on merlin-arthur protocols for subset sum. Inf. Process. Lett., 118:15–16, 2017. doi:10.1016/j.ipl.2016.09.002.
  19. Improving Schroeppel and Shamir’s algorithm for subset sum via orthogonal vectors. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1670–1683. ACM, 2021. doi:10.1145/3406325.3451024.
  20. Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. doi:10.1016/S0022-0000(05)80063-7.
  21. PPP-completeness with connections to cryptography. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 148–158. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00023.
  22. Henk C. A. van Tilborg. An upper bound for codes in a two-access binary erasure channel (corresp.). IEEE Trans. Inf. Theory, 24(1):112–116, 1978. doi:10.1109/TIT.1978.1055814.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com