Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the spectrum and pseudospectrum of infinite-volume operators from local patches (2403.19055v2)

Published 27 Mar 2024 in math.SP, cs.NA, math-ph, math.MP, and math.NA

Abstract: We show how the spectrum of normal discrete short-range infinite-volume operators can be approximated with two-sided error control using only data from finite-sized local patches. As a corollary, we prove the computability of the spectrum of such infinite-volume operators with the additional property of finite local complexity and provide an explicit algorithm. Such operators appear in many applications, e.g. as discretizations of differential operators on unbounded domains or as so-called tight-binding Hamiltonians in solid state physics. For a large class of such operators, our result allows for the first time to establish computationally also the absence of spectrum, i.e. the existence and the size of spectral gaps. We extend our results to the $\varepsilon$-pseudospectrum of non-normal operators, proving that also the pseudospectrum of such operators is computable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (103)
  1. Abel, N. H. Mémoire sur les equations algébriques, où l’on démontre l’impossibilité de la résolution de l’équation générale du cinquième degré. Groendahl, Christiania, 1824.
  2. Random operators, vol. 168 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2015. Disorder effects on quantum spectra and dynamics.
  3. Anderson, P. W. Absence of diffusion in certain random lattices. Physical Review 109, 5 (Mar. 1958), 1492–1505.
  4. Arveson, W. The role of C*-algebras in infinite-dimensional numerical linear algebra. In C* -algebras: 1943–1993, vol. 167 of Contemporary Mathematics. American Mathematical Society, 1993, pp. 114–129.
  5. Periodic approximation of substitution subshifts. In preparation.
  6. Norms and exclusion theorems. Numerische Mathematik 2, 1 (Dec. 1960), 137–141.
  7. Bazley, N. W. Lower bounds for eigenvalues. Journal of Mathematics and Mechanics 10, 2 (1961), 289–307.
  8. Lower bounds for eigenvalues of Schrödinger’s equation. Physical Review 124, 2 (Oct. 1961), 483–492.
  9. Methods for lower bounds to frequencies of continuous elastic systems. Zeitschrift für angewandte Mathematik und Physik (1966).
  10. Beckus, S. personal communication.
  11. Spectral continuity for aperiodic quantum systems I. General theory. Journal of Functional Analysis 275, 11 (Dec. 2018), 2917–2977.
  12. Spectral Continuity for Aperiodic Quantum Systems II. Periodic Approximations in 1D. Tech. rep., Mar. 2018. arXiv:1803.03099.
  13. Symbolic substitution systems beyond abelian groups. arXiv preprint arXiv:2109.15210 (2021).
  14. On the spectrum of operator families on discrete groups over minimal dynamical systems. Mathematische Zeitschrift 287, 3 (Dec. 2017), 993–1007.
  15. Delone dynamical systems and spectral convergence. Ergodic Theory and Dynamical Systems 40, 6 (June 2020), 1510–1544.
  16. Spectral estimates of dynamically-defined and amenable operator families, Oct. 2021. arXiv:2110.05763.
  17. Inclusions for eigenvalues of selfadjoint problems. In Topics in Validated Computations, J. Herzberger, Ed. 1994.
  18. Eigenwertschranken fur das Problem der frei schwingenden rechteckigen Platte und Untersuchungen zum Ausweichphänomen. Zeitschrift für Mathematik und Mechanik (1995).
  19. Bellissard, J. Spectral properties of schrödinger’s operator with a thue-morse potential. In Number Theory and Physics: Proceedings of the Winter School, Les Houches, France, March 7–16, 1989. Springer, 1990, pp. 140–150.
  20. Gap labelling theorems for one dimensional discrete Schrödinger operators. Reviews in Mathematical Physics 4, 01 (1992), 1–37.
  21. Spectral properties of one dimensional quasi-crystals. Communications in Mathematical Physics 125, 3 (Sept. 1989), 527–543.
  22. Computing Spectra – On the Solvability Complexity Index Hierarchy and Towers of Algorithms, June 2020. arXiv:1508.03280.
  23. Universal algorithms for computing spectra of periodic operators. Numerische Mathematik 150, 3 (Mar. 2022), 719–767.
  24. Delone Sets with Finite Local Complexity: Linear Repetitivity Versus Positivity of Weights. Discrete & Computational Geometry 49, 2 (Mar. 2013), 335–347.
  25. Blum, L. Computing over the reals: Where Turing meets Newton. Notices of the AMS 51, 9 (2004), 1024–1034.
  26. Complexity and Real Computation. Springer Science & Business Media, 1998.
  27. On a theory of computation and complexity over the real numbers: Mp-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21, 1 (1989), 1–46.
  28. Böttcher, A. Pseudospectra and Singular Values of Large Convolution Operators. The Journal of Integral Equations and Applications 6, 3 (1994), 267–301.
  29. Guaranteed lower eigenvalue bounds for the biharmonic equation. Numerische Mathematik 126, 1 (2014), 33–51.
  30. Guaranteed lower bounds for eigenvalues. Mathematics of Computation 83, 290 (Nov. 2014), 2605–2629.
  31. On the spectra and pseudospectra of a class of non-self-adjoint random matrices and operators. Operators and Matrices, 4 (2013), 739–775.
  32. Coburn’s lemma and the finite section method for random Jacobi operators. Journal of Functional Analysis 270, 2 (Jan. 2016), 802–841.
  33. Colbrook, M. Pseudoergodic operators and periodic boundary conditions. Mathematics of Computation 89, 322 (2020), 737–766.
  34. Colbrook, M. J. On the Computation of Geometric Features of Spectra of Linear Operators on Hilbert Spaces. Foundations of Computational Mathematics (2022).
  35. The foundations of spectral computations via the solvability complexity index hierarchy. Journal of the European Mathematical Society (2022).
  36. How to compute spectra with error control. Physical Review Letters 122, 25 (2019), 250201.
  37. The fractal dimension of the spectrum of the fibonacci hamiltonian. Communications in mathematical physics 280, 2 (2008), 499–516.
  38. One-Dimensional Ergodic Schrödinger Operators: I. General Theory, vol. 221. American Mathematical Society, 2022.
  39. The Fibonacci Hamiltonian. Inventiones mathematicae 206, 3 (Dec. 2016), 629–692.
  40. Davies, E. B. A Hierarchical Method for Obtaining Eigenvalue Enclosures. Mathematics of Computation 69, 232 (2000), 1435–1455.
  41. Spectral pollution. IMA journal of numerical analysis 24, 3 (2004), 417–438.
  42. Spectral Theory and Geometry. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1999.
  43. Spectra of discrete two-dimensional periodic schrödinger operators with small potentials. Journal of Spectral Theory 9, 3 (2019), 1063–1087.
  44. Landau levels in quasicrystals. Physical Review B 98, 16 (Oct. 2018), 165427.
  45. Hofstadter butterfly of a quasicrystal. Physical Review B 94, 20 (2016), 205437.
  46. Aperiodic Weak Topological Superconductors. Physical Review Letters 116, 25 (June 2016), 257002.
  47. Finite sections of periodic Schrödinger operators, Apr. 2022. arXiv:2110.09339.
  48. Gershgorin, S. Über die Abgrenzung der Eigenwerte einer Matrix. Bulletin de l’Académie des Sciences de l’URSS. VII. Série 1931, 6 (1931), 749–754.
  49. Eigenvalue computation in the 20th century. In Numerical Analysis: Historical Developments in the 20th Century. Elsevier, 2001, pp. 209–239.
  50. Halperin, B. I. Properties of a particle in a one-dimensional random potential. Advances in Chemical Physics 13 (1967), 123–177.
  51. Hansen, A. On the Solvability Complexity Index, the n-pseudospectrum and approximations of spectra of operators. Journal of the American Mathematical Society 24, 1 (Jan. 2011), 81–124.
  52. Hansen, A. C. On the approximation of spectra of linear operators on Hilbert spaces. Journal of Functional Analysis 254, 8 (Apr. 2008), 2092–2126.
  53. Hansen, A. C. Infinite-dimensional numerical linear algebra: theory and applications. Proceedings of The Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 466, 2124 (2010), 3539–3559.
  54. Complexity Issues in Computing Spectra, Pseudospectra and Resolvents, Oct. 2016. arXiv:1610.07072.
  55. Hege, P. Spectral gaps in systems of finite local complexity. PhD thesis, University of Tübingen, 2024.
  56. Finding spectral gaps in quasicrystals. Physical Review B 106, 15 (Oct. 2022), 155140.
  57. On spectral variations under bounded real matrix perturbations. Numerische Mathematik 60 (1991), 509–524.
  58. Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Physical Review B 14, 6 (Sept. 1976), 2239–2249.
  59. Guaranteed lower bounds for eigenvalues of elliptic operators. Journal of Scientific Computing 67 (2016), 1181–1197.
  60. Jagannathan, A. The Fibonacci quasicrystal: Case study of hidden dimensions and multifractality. Reviews of Modern Physics 93, 4 (Nov. 2021), 045001.
  61. An eightfold optical quasicrystal with cold atoms. Europhysics Letters 104, 6 (Jan. 2014), 66003.
  62. Kato, T. On the Upper and Lower Bounds of Eigenvalues. Journal of the Physical Society of Japan 4, 4-6 (1949), 334–339.
  63. On the Conception of the Energy Band in the Perturbed Periodic Potential. Progress of Theoretical Physics 5, 2 (1950), 330–331.
  64. Kellendonk, J. Noncommutative geometry of tilings and gap labelling. Reviews in Mathematical Physics 7, 07 (1995), 1133–1180.
  65. Localization Problem in One Dimension: Mapping and Escape. Physical Review Letters 50, 23 (June 1983), 1870–1872.
  66. Schrödinger operators on periodic discrete graphs. Journal of Mathematical Analysis and Applications 420, 1 (2014), 576–611.
  67. Lagarias, J. C. Meyer’s concept of quasicrystal and quasiregular sets. Communications in mathematical physics 179, 2 (1996), 365–376.
  68. Lagarias, J. C. Geometric models for quasicrystals I. Delone sets of finite type. Discrete & Computational Geometry 21, 2 (1999), 161–191.
  69. Lagarias, J. C. Geometric models for quasicrystals II. Local rules under isometries. Discrete & Computational Geometry 21, 3 (1999), 345–372.
  70. Landau, H. J. On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels. Journal d’Analyse Mathématique 28, 1 (1975), 335–357.
  71. Non-linear differential-difference equations with N-dependent coefficients. II. Journal of Physics A: Mathematical and General 12, 7 (1979), L163.
  72. Spectral pollution and how to avoid it. Proceedings of the London Mathematical Society 100, 3 (2010), 864–900.
  73. Lindner, M. The finite section method in the space of essentially bounded functions: An approach using limit operators. Numerical Functional Analysis and Optimization 24, 7-8 (Dec. 2003), 863–893.
  74. Lindner, M. Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method. Springer Science & Business Media, Nov. 2006.
  75. A note on Hausdorff convergence of pseudospectra. Opuscula Mathematica 43, 1 (2023), 101–108.
  76. An affirmative answer to a core issue on limit operators. Journal of Functional Analysis 267, 3 (Aug. 2014), 901–917.
  77. Liu, W. Fermi isospectrality for discrete periodic schrödinger operators. Communications on Pure and Applied Mathematics 77, 2 (2024), 1126–1146.
  78. Liu, X. A framework of verified eigenvalue bounds for self-adjoint differential operators. Applied Mathematics and Computation 267 (2015), 341–355.
  79. Localization of generalized Wannier bases implies Chern triviality in non-periodic insulators. Annales Henri Poincaré 24, 3 (Mar. 2023), 895–930.
  80. A topological view on algebraic computation models. Journal of Complexity 44 (2018), 1–22.
  81. Penrose, R. Pentaplexity: A class of non-periodic tilings of the plane. The Mathematical Intelligencer 2, 1 (1979), 32–37.
  82. Plum, M. Guaranteed numerical bounds for eigenvalues. In Spectral Theory & Computational Methods of Sturm-Liouville Problems. CRC Press, 2021, pp. 313–332.
  83. The essential spectrum of schrödinger operators on lattices. Journal of Physics A: Mathematical and General 39, 26 (2006), 8377.
  84. Ritz, W. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Journal für die reine und angewandte Mathematik, 135 (1909).
  85. Ruffini, P. Sopra la determinazione delle radici nelle equazioni numeriche di qualunque grado. memoria del dottor Paolo Ruffini. Modena, Società Tipografica (1804).
  86. Rösler, F. On the Solvability Complexity Index for Unbounded Selfadjoint and Schrödinger Operators. Integral Equations and Operator Theory 91, 6 (Nov. 2019), 54.
  87. Saad, Y. Numerical methods for large eigenvalue problems. SIAM, 2011.
  88. Satija, I. I. The Butterfly in the Quantum World: The story of the most fascinating quantum fractal. IOP Concise Physics, Sept. 2016.
  89. Schur, J. Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen.
  90. Discrete schrödinger operators on a graph. Nagoya mathematical journal 125 (1992), 141–150.
  91. Sütő, A. The spectrum of a quasiperiodic Schrödinger operator. Communications in mathematical physics 111, 3 (1987), 409–415.
  92. Taussky, O. How I became a torchbearer for matrix theory. The American Mathematical Monthly 95, 9 (Nov. 1988), 801–812.
  93. Tenenbaum, L. Approximations of symbolic substitution systems in one dimension. arXiv preprint arXiv:2402.19151 (2024).
  94. Thouless, D. J. Electrons in disordered systems and the theory of localization. Physics Reports 13, 3 (1974), 93–142.
  95. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. University Press Group, Princeton, N.J, July 2005.
  96. Turing, A. M. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society s2-42, 1 (1937), 230–265.
  97. Varah, J. M. On the separation of two matrices. SIAM Journal on Numerical Analysis 16, 2 (1979), 216–222.
  98. Praktische Verfahren der Gleichungsauflösung. Zeitschrift für angewandte Mathematik und Mechanik 9 (1929), 58–76.
  99. Weinstein, A. Étude des spectres des équations aux dérivées partielles de la theorie des plaques elastiques. PhD thesis, Université de Paris, 1937.
  100. Weyl, H. Ramifications, old and new, of the eigenvalue problem. Bulletin of the American Mathematical Society 56 (1950), 115–139.
  101. Wilkinson, J. H. Rigorous error bounds for computed eigensystems. The Computer Journal. Section A / Section B 4 (1961), 230–241.
  102. Yamamoto, T. Error bounds for computed eigenvalues and eigenvectors. Numerische Mathematik 34, 2 (June 1980), 189–199.
  103. Yamamoto, T. Error bounds for computed eigenvalues and eigenvectors. II. Numerische Mathematik 40 (1982), 201–206.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets