Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Neural post-Einsteinian framework for efficient theory-agnostic tests of general relativity with gravitational waves (2403.18936v2)

Published 27 Mar 2024 in gr-qc and astro-ph.HE

Abstract: The parametrized post-Einsteinian (ppE) framework and its variants are widely used to probe gravity through gravitational-wave tests that apply to a large class of theories beyond general relativity. However, the ppE framework is not truly theory-agnostic as it only captures certain types of deviations from general relativity: those that admit a post-Newtonian series representation in the inspiral of coalescing compact objects. Moreover, each type of deviation in the ppE framework has to be tested separately, making the whole process computationally inefficient and expensive, possibly obscuring the theoretical interpretation of potential deviations that could be detected in the future. We here present the neural post-Einsteinian (npE) framework, an extension of the ppE formalism that overcomes the above weaknesses using deep-learning neural networks. The core of the npE framework is a variational autoencoder that maps the discrete ppE theories into a continuous latent space in a well-organized manner. This design enables the npE framework to test many theories simultaneously and to select the theory that best describes the observation in a single parameter estimation run. The smooth extension of the ppE parametrization also allows for more general types of deviations to be searched for with the npE model. We showcase the application of the new npE framework to future tests of general relativity with the fifth observing run of the LIGO-Virgo-KAGRA collaboration. In particular, the npE framework is demonstrated to efficiently explore modifications to general relativity beyond what can be mapped by the ppE framework, including modifications coming from higher-order curvature corrections to the Einstein-Hilbert action at high post-Newtonian order, and dark-photon interactions in possibly hidden sectors of matter that do not admit a post-Newtonian representation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14, 57 (1965).
  2. J. M. M. Senovilla and D. Garfinkle, The 1965 Penrose singularity theorem, Class. Quant. Grav. 32, 124008 (2015), arXiv:1410.5226 [gr-qc] .
  3. A. Shomer, A Pedagogical explanation for the non-renormalizability of gravity,   (2007), arXiv:0709.3555 [hep-th] .
  4. A. G. Riess et al. (Supernova Search Team), Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116, 1009 (1998), arXiv:astro-ph/9805201 .
  5. S. Perlmutter et al. (Supernova Cosmology Project), Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 High Redshift Supernovae, Astrophys. J. 517, 565 (1999), arXiv:astro-ph/9812133 .
  6. Y. Sofue and V. Rubin, Rotation curves of spiral galaxies, Ann. Rev. Astron. Astrophys. 39, 137 (2001), arXiv:astro-ph/0010594 .
  7. G. Bertone and D. Hooper, History of dark matter, Rev. Mod. Phys. 90, 045002 (2018), arXiv:1605.04909 [astro-ph.CO] .
  8. L. Canetti, M. Drewes, and M. Shaposhnikov, Matter and Antimatter in the Universe, New J. Phys. 14, 095012 (2012), arXiv:1204.4186 [hep-ph] .
  9. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
  10. C. M. Will, The Confrontation between General Relativity and Experiment, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
  11. I. H. Stairs, Testing general relativity with pulsar timing, Living Rev. Rel. 6, 5 (2003), arXiv:astro-ph/0307536 .
  12. N. Yunes, K. Yagi, and F. Pretorius, Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226, Phys. Rev. D 94, 084002 (2016), arXiv:1603.08955 [gr-qc] .
  13. Z. Carson and K. Yagi, Testing General Relativity with Gravitational Waves 10.1007/978-981-15-4702-7_41-1 (2020), arXiv:2011.02938 [gr-qc] .
  14. B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
  15. R. Abbott et al. (LIGO Scientific, Virgo), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
  16. R. Abbott et al. (LIGO Scientific, VIRGO), GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. D 109, 022001 (2024), arXiv:2108.01045 [gr-qc] .
  17. R. Magee et al., Sub-threshold Binary Neutron Star Search in Advanced LIGO’s First Observing Run, Astrophys. J. Lett. 878, L17 (2019), arXiv:1901.09884 [gr-qc] .
  18. N. Yunes and F. Pretorius, Fundamental Theoretical Bias in Gravitational Wave Astrophysics and the Parameterized Post-Einsteinian Framework, Phys. Rev. D 80, 122003 (2009), arXiv:0909.3328 [gr-qc] .
  19. L. Sampson, N. Cornish, and N. Yunes, Gravitational Wave Tests of Strong Field General Relativity with Binary Inspirals: Realistic Injections and Optimal Model Selection, Phys. Rev. D 87, 102001 (2013), arXiv:1303.1185 [gr-qc] .
  20. J. Meidam et al., Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method, Phys. Rev. D 97, 044033 (2018), arXiv:1712.08772 [gr-qc] .
  21. B. P. Abbott et al. (LIGO Scientific, Virgo), Tests of General Relativity with GW170817, Phys. Rev. Lett. 123, 011102 (2019b), arXiv:1811.00364 [gr-qc] .
  22. B. P. Abbott et al. (LIGO Scientific, Virgo), Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1, Phys. Rev. D 100, 104036 (2019c), arXiv:1903.04467 [gr-qc] .
  23. R. Abbott et al. (LIGO Scientific, Virgo), Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103, 122002 (2021c), arXiv:2010.14529 [gr-qc] .
  24. R. Abbott et al. (LIGO Scientific, Virgo), Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103, 122002 (2021d), arXiv:2010.14529 [gr-qc] .
  25. S. Tahura and K. Yagi, Parameterized Post-Einsteinian Gravitational Waveforms in Various Modified Theories of Gravity, Phys. Rev. D 98, 084042 (2018), [Erratum: Phys.Rev.D 101, 109902 (2020)], arXiv:1809.00259 [gr-qc] .
  26. S. E. Perkins, N. Yunes, and E. Berti, Probing Fundamental Physics with Gravitational Waves: The Next Generation, Phys. Rev. D 103, 044024 (2021a), arXiv:2010.09010 [gr-qc] .
  27. S. Perkins and N. Yunes, Are parametrized tests of general relativity with gravitational waves robust to unknown higher post-Newtonian order effects?, Phys. Rev. D 105, 124047 (2022), arXiv:2201.02542 [gr-qc] .
  28. N. E. Wolfe, C. Talbot, and J. Golomb, Accelerating tests of general relativity with gravitational-wave signals using hybrid sampling, Phys. Rev. D 107, 104056 (2023), arXiv:2208.12872 [gr-qc] .
  29. P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82, 711 (1995).
  30. L. M. Sampson, Testing General Relativity with Gravitational Waves, Ph.D. thesis, Montana State U. (2014).
  31. A. Pai and K. G. Arun, Singular value decomposition in parametrised tests of post-Newtonian theory, Class. Quant. Grav. 30, 025011 (2013), arXiv:1207.1943 [gr-qc] .
  32. D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes,   (2013), arXiv:1312.6114 [stat.ML] .
  33. S. Sankarapandian and B. Kulis, β𝛽\betaitalic_β-Annealed Variational Autoencoder for glitches,   (2021), arXiv:2107.10667 [cs.LG] .
  34. C.-H. Liao and F.-L. Lin, Deep generative models of gravitational waveforms via conditional autoencoder, Phys. Rev. D 103, 124051 (2021), arXiv:2101.06685 [astro-ph.IM] .
  35. B. Zackay, L. Dai, and T. Venumadhav, Relative Binning and Fast Likelihood Evaluation for Gravitational Wave Parameter Estimation,   (2018), arXiv:1806.08792 [astro-ph.IM] .
  36. S. Morisaki, Accelerating parameter estimation of gravitational waves from compact binary coalescence using adaptive frequency resolutions, Phys. Rev. D 104, 044062 (2021), arXiv:2104.07813 [gr-qc] .
  37. M. J. Williams, J. Veitch, and C. Messenger, Nested sampling with normalizing flows for gravitational-wave inference, Phys. Rev. D 103, 103006 (2021), arXiv:2102.11056 [gr-qc] .
  38. K. W. K. Wong, M. Isi, and T. D. P. Edwards, Fast Gravitational-wave Parameter Estimation without Compromises, Astrophys. J. 958, 129 (2023), arXiv:2302.05333 [astro-ph.IM] .
  39. J. Veitch et al., Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library, Phys. Rev. D 91, 042003 (2015), arXiv:1409.7215 [gr-qc] .
  40. G. Ashton and C. Talbot, B ilby-MCMC: an MCMC sampler for gravitational-wave inference, Mon. Not. Roy. Astron. Soc. 507, 2037 (2021), arXiv:2106.08730 [gr-qc] .
  41. N. J. Cornish, Rapid and Robust Parameter Inference for Binary Mergers, Phys. Rev. D 103, 104057 (2021), arXiv:2101.01188 [gr-qc] .
  42. T. Islam, J. Roulet, and T. Venumadhav, Factorized Parameter Estimation for Real-Time Gravitational Wave Inference,   (2022), arXiv:2210.16278 [gr-qc] .
  43. E. Lee, S. Morisaki, and H. Tagoshi, Mass-spin reparametrization for a rapid parameter estimation of inspiral gravitational-wave signals, Phys. Rev. D 105, 124057 (2022), arXiv:2203.05216 [gr-qc] .
  44. J. Wofford et al., Expanding RIFT: Improving performance for GW parameter inference,  (2022), arXiv:2210.07912 [gr-qc] .
  45. Z. Carson and K. Yagi, Parameterized and Consistency Tests of Gravity with GravitationalWaves: Current and Future, MDPI Proc. 17, 5 (2019), arXiv:1908.07103 [gr-qc] .
  46. L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83, 3370 (1999a), arXiv:hep-ph/9905221 .
  47. L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83, 4690 (1999b), arXiv:hep-th/9906064 .
  48. P. A. M. Dirac, The Cosmological constants, Nature 139, 323 (1937).
  49. N. Yunes, F. Pretorius, and D. Spergel, Constraining the evolutionary history of Newton’s constant with gravitational wave observations, Phys. Rev. D 81, 064018 (2010), arXiv:0912.2724 [gr-qc] .
  50. R. R. Metsaev and A. A. Tseytlin, Order alpha-prime (Two Loop) Equivalence of the String Equations of Motion and the Sigma Model Weyl Invariance Conditions: Dependence on the Dilaton and the Antisymmetric Tensor, Nucl. Phys. B 293, 385 (1987).
  51. K.-i. Maeda, N. Ohta, and Y. Sasagawa, Black Hole Solutions in String Theory with Gauss-Bonnet Curvature Correction, Phys. Rev. D 80, 104032 (2009), arXiv:0908.4151 [hep-th] .
  52. N. Yunes and L. C. Stein, Non-Spinning Black Holes in Alternative Theories of Gravity, Phys. Rev. D 83, 104002 (2011), arXiv:1101.2921 [gr-qc] .
  53. T. Jacobson, Primordial black hole evolution in tensor scalar cosmology, Phys. Rev. Lett. 83, 2699 (1999), arXiv:astro-ph/9905303 .
  54. M. W. Horbatsch and C. P. Burgess, Cosmic Black-Hole Hair Growth and Quasar OJ287, JCAP 05, 010, arXiv:1111.4009 [gr-qc] .
  55. T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, Phys. Rev. D 64, 024028 (2001), arXiv:gr-qc/0007031 .
  56. T. Jacobson, Einstein-aether gravity: A Status report, PoS QG-PH, 020 (2007), arXiv:0801.1547 [gr-qc] .
  57. D. Blas, O. Pujolas, and S. Sibiryakov, Consistent Extension of Horava Gravity, Phys. Rev. Lett. 104, 181302 (2010), arXiv:0909.3525 [hep-th] .
  58. C. M. Will, Bounding the mass of the graviton using gravitational wave observations of inspiralling compact binaries, Phys. Rev. D 57, 2061 (1998), arXiv:gr-qc/9709011 .
  59. V. A. Rubakov and P. G. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp. 51, 759 (2008), arXiv:0802.4379 [hep-th] .
  60. K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84, 671 (2012), arXiv:1105.3735 [hep-th] .
  61. C. de Rham, Massive Gravity, Living Rev. Rel. 17, 7 (2014), arXiv:1401.4173 [hep-th] .
  62. S. Alexander and N. Yunes, Chern-Simons Modified General Relativity, Phys. Rept. 480, 1 (2009), arXiv:0907.2562 [hep-th] .
  63. G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2, 303 (1989).
  64. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016) http://www.deeplearningbook.org.
  65. A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library,   (2019), arXiv:1912.01703 [cs.LG] .
  66. I. Loshchilov and F. Hutter, Decoupled Weight Decay Regularization (2017) arXiv:1711.05101 [cs.LG] .
  67. G. Ashton et al., BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy, Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
  68. J. S. Speagle, dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences, Mon. Not. Roy. Astron. Soc. 493, 3132 (2020), arXiv:1904.02180 [astro-ph.IM] .
  69. K. Chamberlain and N. Yunes, Theoretical Physics Implications of Gravitational Wave Observation with Future Detectors, Phys. Rev. D 96, 084039 (2017), arXiv:1704.08268 [gr-qc] .
  70. K. Yamada, T. Narikawa, and T. Tanaka, Testing massive-field modifications of gravity via gravitational waves, PTEP 2019, 103E01 (2019), arXiv:1905.11859 [gr-qc] .
  71. M. Isi, K. Chatziioannou, and W. M. Farr, Hierarchical test of general relativity with gravitational waves, Phys. Rev. Lett. 123, 121101 (2019), arXiv:1904.08011 [gr-qc] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com