Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breaking the Limitations with Sparse Inputs by Variational Frameworks (BLIss) in Terahertz Super-Resolution 3D Reconstruction (2403.18776v1)

Published 27 Mar 2024 in physics.optics and eess.IV

Abstract: Data acquisition, image processing, and image quality are the long-lasting issues for terahertz (THz) 3D reconstructed imaging. Existing methods are primarily designed for 2D scenarios, given the challenges associated with obtaining super-resolution (SR) data and the absence of an efficient SR 3D reconstruction framework in conventional computed tomography (CT). Here, we demonstrate BLIss, a new approach for THz SR 3D reconstruction with sparse 2D data input. BLIss seamlessly integrates conventional CT techniques and variational framework with the core of the adapted Euler-Elastica-based model. The quantitative 3D image evaluation metrics, including the standard deviation of Gaussian, mean curvatures, and the multi-scale structural similarity index measure (MS-SSIM), validate the superior smoothness and fidelity achieved with our variational framework approach compared with conventional THz CT modal. Beyond its contributions to advancing THz SR 3D reconstruction, BLIss demonstrates potential applicability in other imaging modalities, such as X-ray and MRI. This suggests extensive impacts on the broader field of imaging applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. G. Ok, K. Park, H. J. Kim, et al., “High-speed terahertz imaging toward food quality inspection,” \JournalTitleAppl. Opt. 53, 1406–1412 (2014).
  2. M. Karaliūnas, K. E. Nasser, A. Urbanowicz, et al., “Non-destructive inspection of food and technical oils by terahertz spectroscopy,” \JournalTitleScientific reports 8, 18025 (2018).
  3. B. Li, Z.-x. Sun, A.-k. Yang, and Y.-d. Liu, “Study on detection of the internal quality of pumpkin seeds based on terahertz imaging technology,” \JournalTitleJournal of Food Measurement and Characterization 17, 1576–1585 (2023).
  4. K. B. Cooper, R. J. Dengler, N. Llombart, et al., “Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar,” \JournalTitleIEEE Transactions on Microwave Theory and Techniques 56, 2771–2778 (2008).
  5. K. B. Cooper, R. J. Dengler, N. Llombart, et al., “THz Imaging Radar for Standoff Personnel Screening,” \JournalTitleIEEE Transactions on Terahertz Science and Technology 1, 169–182 (2011).
  6. Y. Cheng, Y. Wang, Y. Niu, and Z. Zhao, “Concealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening,” \JournalTitleOpt. Express 28, 6350–6366 (2020).
  7. Y. Takida, K. Nawata, and H. Minamide, “Security screening system based on terahertz-wave spectroscopic gas detection,” \JournalTitleOpt. Express 29, 2529–2537 (2021).
  8. M. Bessou, B. Chassagne, J.-P. Caumes, et al., “Three-dimensional terahertz computed tomography of human bones,” \JournalTitleAppl. Opt. 51, 6738–6744 (2012).
  9. M. Jewariya, E. Abraham, T. Kitaguchi, et al., “Fast three-dimensional terahertz computed tomography using real-time line projection of intense terahertz pulse,” \JournalTitleOpt. Express 21, 2423–2433 (2013).
  10. K. Krügener, E.-M. Stübling, R. Jachim, et al., “THz tomography for detecting damages on wood caused by insects,” \JournalTitleAppl. Opt. 58, 6063–6066 (2019).
  11. Y. H. Tao, A. J. Fitzgerald, and V. P. Wallace, “Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology,” \JournalTitleSensors 20 (2020).
  12. D. M. Mittleman, “Twenty years of terahertz imaging [Invited],” \JournalTitleOpt. Express 26, 9417–9431 (2018).
  13. A. Leitenstorfer, A. S. Moskalenko, T. Kampfrath, et al., “The 2023 terahertz science and technology roadmap,” \JournalTitleJournal of Physics D: Applied Physics 56, 223001 (2023).
  14. Y.-C. Hung, T.-H. Chao, P. Yu, and S.-H. Yang, “Terahertz spatio-temporal deep learning computed tomography,” \JournalTitleOpt. Express 30, 22523–22537 (2022).
  15. Y. Zhang, K. Chen, and S.-H. Yang, “Fast Terahertz 3D Super-Resolution Surface Reconstruction by Variational Model from Limited Low-Resolution Sampling,” in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), (2022), pp. 1–2.
  16. W.-T. Su, Y.-C. Hung, P.-J. Yu, et al., “Making the Invisible Visible: Toward High-Quality Terahertz Tomographic Imaging via Physics-Guided Restoration,” \JournalTitleInternational Journal of Computer Vision pp. 1–20 (2023).
  17. W.-T. Su, Y.-C. Hung, P.-J. Yu, et al., “Physics-Guided Terahertz Computational Imaging: A tutorial on state-of-the-art techniques,” \JournalTitleIEEE Signal Processing Magazine 40, 32–45 (2023).
  18. Y. Zhang, K. Chen, and S.-H. Yang, “Euler-Elastica Variational Model for Pulsed Terahertz 3D Imaging,” in CLEO 2023, (Optica Publishing Group, 2023), p. JTh2A.104.
  19. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” \JournalTitleOpt. Lett. 20, 1716–1718 (1995).
  20. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” \JournalTitleOpt. Lett. 22, 904–906 (1997).
  21. N. Karpowicz, H. Zhong, J. Xu, et al., “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” \JournalTitleSemiconductor Science and Technology 20, S293 (2005).
  22. C. Jansen, S. Wietzke, O. Peters, et al., “Terahertz imaging: applications and perspectives,” \JournalTitleAppl. Opt. 49, E48–E57 (2010).
  23. M. Koch, D. M. Mittleman, J. Ornik, and E. Castro-Camus, “Terahertz time-domain spectroscopy,” \JournalTitleNature Reviews Methods Primers 3, 48 (2023).
  24. A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” \JournalTitlePhysics in Medicine & Biology 47, 3797 (2002).
  25. V. Conti Nibali and M. Havenith, “New Insights into the Role of Water in Biological Function: Studying Solvated Biomolecules Using Terahertz Absorption Spectroscopy in Conjunction with Molecular Dynamics Simulations,” \JournalTitleJournal of the American Chemical Society 136, 12800–12807 (2014). PMID: 25127002.
  26. K. N. Okada, Y. Takahashi, M. Mogi, et al., “Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state,” \JournalTitleNature communications 7, 12245 (2016).
  27. K. Shiraga, Y. Ogawa, and N. Kondo, “Hydrogen Bond Network of Water around Protein Investigated with Terahertz and Infrared Spectroscopy,” \JournalTitleBiophysical Journal 111, 2629–2641 (2016).
  28. D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” \JournalTitleNew England journal of medicine 357, 2277–2284 (2007).
  29. B. Ferguson, S. Wang, D. Gray, et al., “T-ray computed tomography,” \JournalTitleOpt. Lett. 27, 1312–1314 (2002).
  30. B. Recur, A. Younus, S. Salort, et al., “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” \JournalTitleOpt. Express 19, 5105–5117 (2011).
  31. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” \JournalTitleApplied Physics Letters 87, 061101 (2005).
  32. Y. Kim and D.-S. Yee, “High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling,” \JournalTitleOpt. Lett. 35, 3715–3717 (2010).
  33. X. Li, J. Li, Y. Li, et al., “High-throughput terahertz imaging: progress and challenges,” \JournalTitleLight: Science & Applications 12, 233 (2023).
  34. R. Al Hadi, H. Sherry, J. Grzyb, et al., “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” \JournalTitleIEEE Journal of Solid-State Circuits 47, 2999–3012 (2012).
  35. N. Nemoto, N. Kanda, R. Imai, et al., “High-Sensitivity and Broadband, Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” \JournalTitleIEEE Transactions on Terahertz Science and Technology 6, 175–182 (2016).
  36. N. T. Yardimci and M. Jarrahi, “High sensitivity terahertz detection through large-area plasmonic nano-antenna arrays,” \JournalTitleScientific reports 7, 42667 (2017).
  37. X. Li, D. Mengu, A. Ozcan, and M. Jarrahi, “Super-Resolution Terahertz Imaging Through a Plasmonic Photoconductive Focal-Plane Array,” in CLEO 2023, (Optica Publishing Group, 2023), p. SM1N.2.
  38. S.-H. Ding, Q. Li, R. Yao, and Q. Wang, “High-resolution terahertz reflective imaging and image restoration,” \JournalTitleAppl. Opt. 49, 6834–6839 (2010).
  39. D. C. Popescu and A. D. Hellicar, “Point spread function estimation for a terahertz imaging system,” \JournalTitleEURASIP Journal on Advances in Signal Processing 2010, 1–8 (2010).
  40. K. Ahi, “Mathematical Modeling of THz Point Spread Function and Simulation of THz Imaging Systems,” \JournalTitleIEEE Transactions on Terahertz Science and Technology 7, 747–754 (2017).
  41. T. M. Wong, M. Kahl, P. Haring Bolívar, and A. Kolb, “Computational image enhancement for frequency modulated continuous wave (FMCW) THz image,” \JournalTitleJournal of Infrared, Millimeter, and Terahertz Waves 40, 775–800 (2019).
  42. Y. Li, L. Li, A. Hellicar, and Y. J. Guo, “Super-resolution reconstruction of terahertz images,” in Terahertz for Military and Security Applications VI, vol. 6949 J. O. Jensen, H.-L. Cui, D. L. Woolard, and R. J. Hwu, eds., International Society for Optics and Photonics (SPIE, 2008), p. 69490J.
  43. K. Ahi, “A method and system for enhancing the resolution of terahertz imaging,” \JournalTitleMeasurement 138, 614–619 (2019).
  44. J. Kim, J. K. Lee, and K. M. Lee, “Accurate Image Super-Resolution Using Very Deep Convolutional Networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016).
  45. Z. Li, Z. Cen, and X. Li, “A terahertz image super-resolution reconstruction algorithm based on the deep convolutional neural network,” in AOPC 2017: Optical Sensing and Imaging Technology and Applications, vol. 10462 Y. Jiang, H. Gong, W. Chen, and J. Li, eds., International Society for Optics and Photonics (SPIE, 2017), p. 104621E.
  46. K. Zhang, W. Zuo, and L. Zhang, “Learning a single convolutional super-resolution network for multiple degradations,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (2018), pp. 3262–3271.
  47. W. Yibin, Z. Rongyue, X. Hong, et al., “Terahertz Image Super-Resolution Reconstruction of Passive Safety Inspection Based on Generative Adversarial Network,” in 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), (2019), pp. 22–27.
  48. Q. Mao, Y. Zhu, C. Lv, et al., “Convolutional neural network model based on terahertz imaging for integrated circuit defect detections,” \JournalTitleOpt. Express 28, 5000–5012 (2020).
  49. Y. Wang, F. Qi, and J. Wang, “Terahertz image super-resolution based on a complex convolutional neural network,” \JournalTitleOpt. Lett. 46, 3123–3126 (2021).
  50. X. Yang, D. Zhang, Z. Wang, et al., “Super-resolution reconstruction of terahertz images based on a deep-learning network with a residual channel attention mechanism,” \JournalTitleAppl. Opt. 61, 3363–3370 (2022).
  51. M. Röger and R. Schätzle, “On a Modified Conjecture of De Giorgi,” \JournalTitleMathematische Zeitschrift 254, 675 (2006).
  52. E. Bretin, F. Dayrens, and S. Masnou, “Volume reconstruction from slices,” \JournalTitleSIAM Journal on Imaging Sciences 10, 2326–2358 (2017).
  53. Y. Zhang, K. Chen, and S.-H. Yang, “Super-resolution surface reconstruction from few low-resolution slices,” \JournalTitleInverse Problems and Imaging pp. 1–33 (2023).
  54. A. Siemion, “The Magic of Optics—An Overview of Recent Advanced Terahertz Diffractive Optical Elements,” \JournalTitleSensors 21 (2021).
  55. Y. Zhang, K. Chen, and S.-H. Yang, “Demo Codes for BLIss,” https://github.com/cyiyoo/BLIss (2024).

Summary

We haven't generated a summary for this paper yet.