Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Control Synthesis of Markov Decision Processes for Efficiency with Surveillance Tasks (2403.18632v1)

Published 27 Mar 2024 in eess.SY and cs.SY

Abstract: We investigate the problem of optimal control synthesis for Markov Decision Processes (MDPs), addressing both qualitative and quantitative objectives. Specifically, we require the system to fulfill a qualitative surveillance task in the sense that a specific region of interest can be visited infinitely often with probability one. Furthermore, to quantify the performance of the system, we consider the concept of efficiency, which is defined as the ratio between rewards and costs. This measure is more general than the standard long-run average reward metric as it aims to maximize the reward obtained per unit cost. Our objective is to synthesize a control policy that ensures the surveillance task while maximizes the efficiency. We provide an effective approach to synthesize a stationary control policy achieving $\epsilon$-optimality by integrating state classifications of MDPs and perturbation analysis in a novel manner. Our results generalize existing works on efficiency-optimal control synthesis for MDP by incorporating qualitative surveillance tasks. A robot motion planning case study is provided to illustrate the proposed algorithm.

Summary

We haven't generated a summary for this paper yet.