The Lensing Effect of Quantum-Corrected Black Hole and Parameter Constraints from EHT Observations (2403.18606v3)
Abstract: The quantum-corrected black hole model demonstrates significant potential in the study of gravitational lensing effects. By incorporating quantum effects, this model addresses the singularity problem in classical black holes. In this paper, we investigate the impact of the quantum correction parameter on the lensing effect based on the quantum corrected black hole model. Using the black holes $M87*$ and $Sgr A*$ as our subjects, we explore the influence of the quantum correction parameter on angular position, Einstein ring, and time delay. Additionally, we use data from the Event Horizon Telescope observations of black hole shadows to constrain the quantum correction parameter. Our results indicate that the quantum correction parameter significantly affects the lensing coefficients $\bar{a}$ and $\bar{b}$, as well as the Einstein ring. The position $\theta_{\infty}$ and brightness ratio $S$ of the relativistic image exhibit significant changes,with deviations on the order of magnitude of $\sim 1\mu as$ and $\sim 0.01\mu as$, respectively. The impact of the quantum correction parameter on the time delay $\Delta T_{21}$ is particularly significant in the $M87*$ black hole, with deviations reaching up to several tens of hours. Using observational data from the Event Horizon Telescope(EHT) of black hole shadows to constrain the quantum correction parameter, the constraint range under the $M87*$ black hole is $0\le \frac{\alpha}{M2}\le 1.4087$ and the constraint range under the $Sgr A*$ black hole is $0.9713\le \frac{\alpha}{M2}\le 1.6715$ . Although the current resolution of the EHT limits the observation of subtle differences, future high-resolution telescopes are expected to further distinguish between the quantum-corrected black hole and the Schwarzschild black hole, providing new avenues for exploring quantum gravitational effects.
- B. P. Abbott et al. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Phys. Rev. Lett., 116(13):131103, 2016. doi = 10.1103/PhysRevLett.116.131103
- Clifford M. Will. The Confrontation between General Relativity and Experiment. Living Rev. Rel., 17:4, 2014. doi = 10.12942/lrr-2014-4
- Pedro G. Ferreira. Cosmological Tests of Gravity. Ann. Rev. Astron. Astrophys., 57:335–374, 2019. doi = 10.1146/annurev-astro-091918-104423
- Modified Gravity and Cosmology. Phys. Rept., 513:1–189, 2012. doi = 10.1016/j.physrep.2012.01.001
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019. doi = 10.3847/2041-8213/ab0ec7
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022. doi = 10.3847/2041-8213/ac6674
- S. W. Hawking and R. Penrose. The Singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond. A, 314:529–548, 1970. doi = 10.1098/rspa.1970.0021
- Roger Penrose. Gravitational collapse and space-time singularities. Phys. Rev. Lett., 14:57–59, 1965. doi = 10.1103/PhysRevLett.14.57
- Hoop and weak cosmic censorship conjectures for the axisymmetric Einstein-Vlasov system. Phys. Rev. D, 108(6):064054, 2023. doi = 10.1103/PhysRevD.108.064054
- Testing The Weak Cosmic Censorship Conjecture in Short Haired Black Holes. 2 2024. eprint = 2402.16373
- Exploring the Impact of Coupled Behavior on the Weak Cosmic Censorship Conjecture in Cold Dark Matter-Black Hole Systems. 1 2024. eprint = 2401.11482
- The Weak Cosmic Censorship Conjecture in Hairy Kerr Black Holes. 1 2024. eprint = 2401.11379
- Test the weak cosmic censorship conjecture via cold dark matter-black hole and ultralight dark matter-black hole. 11 2023. eprint = 2311.04415
- Test the weak cosmic supervision conjecture in dark matter-black hole system. Eur. Phys. J. C, 83(10):986, 2023. doi = 10.1140/epjc/s10052-023-12163-w
- Strong cosmic censorship in light of weak gravity conjecture for charged black holes. JHEP, 02:236, 2023. doi = 10.1007/JHEP02(2023)236
- Destroying the event horizon of a rotating black-bounce black hole. Eur. Phys. J. C, 83(10):938, 2023. doi = 10.1140/epjc/s10052-023-12117-2
- Quantum Nature of the Big Bang: Improved dynamics. Phys. Rev. D, 74:084003, 2006. doi = 10.1103/PhysRevD.74.084003
- Shadow and stability of quantum-corrected black holes. Eur. Phys. J. C, 83(7):619, 2023. doi = 10.1140/epjc/s10052-023-11800-8
- Fundamental structure of loop quantum gravity. Int. J. Mod. Phys. D, 16:1397–1474, 2007. doi = 10.1142/S0218271807010894
- Background independent quantum gravity: A Status report. Class. Quant. Grav., 21:R53, 2004. doi = 10.1088/0264-9381/21/15/R01
- Alejandro Perez. The Spin Foam Approach to Quantum Gravity. Living Rev. Rel., 16:3, 2013. doi = 10.12942/lrr-2013-3
- From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity. PoS, QGQGS2011:002, 2011. doi = 10.22323/1.140.0002
- Thomas Thiemann. Lectures on loop quantum gravity. Lect. Notes Phys., 631:41–135, 2003. doi = 10.1007/978-3-540-45230-0_3
- Quantum nature of the big bang. Phys. Rev. Lett., 96:141301, 2006. doi = 10.1103/PhysRevLett.96.141301
- Quantum Nature of the Big Bang: An Analytical and Numerical Investigation. I. Phys. Rev. D, 73:124038, 2006. doi = 10.1103/PhysRevD.73.124038
- Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys., 7(2):233–268, 2003. doi = 10.4310/ATMP.2003.v7.n2.a2
- Theodoros Papanikolaou. Primordial black holes in loop quantum cosmology: the effect on the threshold. Class. Quant. Grav., 40(13):134001, 2023. doi = 10.1088/1361-6382/acd97d
- Genericity of big bounce in isotropic loop quantum cosmology. Phys. Rev. Lett., 94:011302, 2005. doi = 10.1103/PhysRevLett.94.011302
- G. V. Vereshchagin. Qualitative approach to semi-classical loop quantum cosmology. JCAP, 07:013, 2004. doi = 10.1088/1475-7516/2004/07/013
- Big crunch avoidance in K=1 semiclassical loop quantum cosmology. Phys. Rev. D, 69:104008, 2004. doi = 10.1103/PhysRevD.69.104008”,
- Edward Wilson-Ewing. Testing loop quantum cosmology. Comptes Rendus Physique, 18:207–225, 2017. doi = 10.1016/j.crhy.2017.02.004
- (b,v)-type variables for black to white hole transitions in effective loop quantum gravity. Phys. Lett. B, 819:136390, 2021. doi = 10.1016/j.physletb.2021.136390
- Quantum Transfiguration of Kruskal Black Holes. Phys. Rev. Lett., 121(24):241301, 2018. doi = 10.1103/PhysRevLett.121.241301
- Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys. Rev. Lett., 126(18):181301, 2021. doi = 10.1103/PhysRevLett.126.181301
- Mass and Horizon Dirac Observables in Effective Models of Quantum Black-to-White Hole Transition. Class. Quant. Grav., 38(9):095002, 2021. doi = 10.1088/1361-6382/abe05d
- Quantum Oppenheimer-Snyder and Swiss Cheese Models. Phys. Rev. Lett., 130(10):101501, 2023. doi = 10.1103/PhysRevLett.130.101501
- Quasinormal modes of quantum-corrected black holes. 12 2023. eprint = 2312.17639
- Shadows and photon rings of a quantum black hole. Phys. Lett. B, 851:138566, 2024. doi = 10.1016/j.physletb.2024.138566
- Scalar fields around a loop quantum gravity black hole in de Sitter spacetime: Quasinormal modes, late-time tails and strong cosmic censorship. Phys. Rev. D, 109(6):064012, 2024. doi = 10.1103/PhysRevD.109.064012
- Xiangdong Zhang. Loop Quantum Black Hole. Universe, 9(7):313, 2023. doi = 10.3390/universe9070313
- Spherical symmetric gravitational collapse of a dust cloud: Polymerized dynamics in reduced phase space. Phys. Rev. D, 107(4):044047, 2023. doi = 10.1103/PhysRevD.107.044047
- Sjur Refsdal and H. Bondi. The Gravitational Lens Effect. Monthly Notices of the Royal Astronomical Society, 128(4):295–306, 09 1964. doi = 10.1093/mnras/128.4.295
- Sidney Liebes. Gravitational Lenses. Phys. Rev., 133:B835–B844, 1964. doi = 10.1103/PhysRev.133.B835
- V. Bozza. Gravitational lensing in the strong field limit. Phys. Rev. D, 66:103001, 2002. doi = 10.1103/PhysRevD.66.103001
- K. S. Virbhadra and George F. R. Ellis. Schwarzschild black hole lensing. Phys. Rev. D, 62:084003, 2000. doi = 10.1103/PhysRevD.62.084003
- Strong field limit of black hole gravitational lensing. Gen. Rel. Grav., 33:1535–1548, 2001. doi = 10.1023/A:1012292927358
- Naoki Tsukamoto. Deflection angle in the strong deflection limit in a general asymptotically flat, static, spherically symmetric spacetime. Phys. Rev. D, 95(6):064035, 2017. doi = 10.1103/PhysRevD.95.064035
- Deflection and gravitational lensing with finite distance effect in the strong deflection limit in stationary and axisymmetric spacetimes. JCAP, 07:036, 2023. doi = 10.1088/1475-7516/2023/07/036
- Strong gravitational lensing by loop quantum gravity motivated rotating black holes and EHT observations. Eur. Phys. J. C, 83(11):1014, 2023. doi = 10.1140/epjc/s10052-023-12205-3
- Analytical study of gravitational lensing in Kerr-Newman black-bounce spacetime. JCAP, 11:006, 2022. doi = 10.1088/1475-7516/2022/11/006
- Gravitational time delay effects by Kerr and Kerr-Newman black holes in strong field limits. Phys. Rev. D, 104(10):104013, 2021. doi = 10.1103/PhysRevD.104.104013
- Strong field gravitational lensing by hairy Kerr black holes. Phys. Rev. D, 103(12):124052, 2021. doi = 10.1103/PhysRevD.103.124052
- Strong gravitational lensing by Kerr and Kerr-Newman black holes. Phys. Rev. D, 103(10):104063, 2021. doi = 10.1103/PhysRevD.103.104063
- Strong gravitational lensing in a squashed Kaluza-Klein Gödel black hole. Phys. Rev. D, 83:124019, 2011. doi = 10.1103/PhysRevD.83.124019
- Strong field limit analysis of gravitational retro lensing. Phys. Rev. D, 69:063004, 2004. doi = 10.1103/PhysRevD.69.063004
- Richard Whisker. Strong gravitational lensing by braneworld black holes. Phys. Rev. D, 71:064004, 2005. doi = 10.1103/PhysRevD.71.064004
- Ernesto F. Eiroa. Braneworld black holes as gravitational lenses. Braz. J. Phys., 35:1113–1116, 2005. doi = 10.1590/S0103-97332005000700026
- Strong Gravitational Lensing in a Brane-World Black Hole. Int. J. Theor. Phys., 54(9):3103–3114, 2015. [Erratum: Int.J.Theor.Phys. 54, 3864–3865 (2015)]. doi = 10.1007/s10773-015-2545-y
- Gravitational lensing by black holes in the 4D4𝐷4D4 italic_D Einstein-Gauss-Bonnet gravity. JCAP, 09:030, 2020. doi = 10.1088/1475-7516/2020/09/030
- V. Bozza and L. Mancini. Time delay in black hole gravitational lensing as a distance estimator. Gen. Rel. Grav., 36:435–450, 2004. doi = 10.1023/B:GERG.0000010486.58026.4f
- Shadow cast and deflection of light by charged rotating regular black holes. Phys. Rev. D, 100(12):124024, 2019. doi = 10.1103/PhysRevD.100.124024
- Investigating strong gravitational lensing effects by supermassive black holes with Horndeski gravity. Eur. Phys. J. C, 82(5):443, 2022. doi = 10.1140/epjc/s10052-022-10357-2
- Gravitational lensing effects of black hole with conformally coupled scalar hair. Eur. Phys. J. C, 83(11):1043, 2023. doi = 10.1140/epjc/s10052-023-12233-z
- Particle motions and Gravitational Lensing in de Rham-Gabadadze-Tolley Massive Gravity Theory. Phys. Rev. D, 100(4):044031, 2019. doi = 10.1103/PhysRevD.100.044031
- Particle acceleration around rotating Einstein-Born-Infeld black hole and plasma effect on gravitational lensing. Phys. Rev. D, 103(8):084057, 2021. doi = 10.1103/PhysRevD.103.084057
- Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole. Annals Phys., 447:169147, 2022. doi = 10.1016/j.aop.2022.169147
- Observational Probes of Cosmic Acceleration. Phys. Rept., 530:87–255, 2013. doi = 10.1016/j.physrep.2013.05.001
- Weak gravitational lensing of the CMB. Phys. Rept., 429:1–65, 2006. doi = 10.1016/j.physrep.2006.03.002
- Constraining dark matter decay with cosmic microwave background and weak-lensing shear observations. Astron. Astrophys., 672:A157, 2023. doi = 10.1051/0004-6361/202245562
- The dark matter of gravitational lensing. Rept. Prog. Phys., 73:086901, 2010. doi = 10.1088/0034-4885/73/8/086901
- Mauro Sereno. Weak field limit of Reissner-Nordstrom black hole lensing. Phys. Rev. D, 69:023002, 2004. doi = 10.1103/PhysRevD.69.023002
- Formalism for testing theories of gravity using lensing by compact objects. I. Static, spherically symmetric case. Phys. Rev. D, 72:104006, 2005. doi = 10.1103/PhysRevD.72.104006
- Magnification relations for Kerr lensing and testing Cosmic Censorship. Phys. Rev. D, 76:064024, 2007. doi = 10.1103/PhysRevD.76.064024
- Analytical Kerr black hole lensing in the weak deflection limit. Phys. Rev. D, 74:123009, 2006. doi = 10.1103/PhysRevD.74.123009
- Applications of the Gauss-Bonnet theorem to gravitational lensing. Class. Quant. Grav., 25:235009, 2008. doi = 10.1088/0264-9381/25/23/235009
- M. C. Werner. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Rel. Grav., 44:3047–3057, 2012. doi = 10.1007/s10714-012-1458-9
- Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D, 94(8):084015, 2016. doi = 10.1103/PhysRevD.94.084015
- Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D, 95(4):044017, 2017. doi = 10.1103/PhysRevD.95.044017
- Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes. Phys. Rev. D, 96(10):104037, 2017. doi = 10.1103/PhysRevD.96.104037
- Light Deflection by a Rotating Global Monopole Spacetime. Phys. Rev. D, 95(10):104012, 2017. doi = 10.1103/PhysRevD.95.104012
- Effect of Lorentz Symmetry Breaking on the Deflection of Light in a Cosmic String Spacetime. Phys. Rev. D, 96(2):024040, 2017. doi = 10.1103/PhysRevD.96.024040
- Gravitational Lensing by Rotating Wormholes. Phys. Rev. D, 97(2):024042, 2018. doi = 10.1103/PhysRevD.97.024042
- Weak deflection angle by electrically and magnetically charged black holes from nonlinear electrodynamics. Phys. Rev. D, 104(2):024033, 2021. doi = 10.1103/PhysRevD.104.024033
- Exact traversable wormhole solution in bumblebee gravity. Phys. Rev. D, 99(2):024042, 2019. doi = 10.1103/PhysRevD.99.024042
- Weak gravitational lensing in dark matter and plasma mediums for wormhole-like static aether solution. Eur. Phys. J. C, 82(11):1057, 2022. doi = 10.1140/epjc/s10052-022-11030-4
- Gravitational lensing by a charged spherically symmetric black hole immersed in thin dark matter. Eur. Phys. J. C, 83(4):281, 2023. doi = 10.1140/epjc/s10052-023-11414-0
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019. doi = 10.3847/2041-8213/ab0c96
- Circular motion of neutral test particles in Reissner-Nordström spacetime. Phys. Rev. D, 83:024021, 2011. doi = 10.1103/PhysRevD.83.024021
- Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 104(2):024003, 2021. doi = 10.1103/PhysRevD.104.024003
- Gravitational lensing by black holes with multiple photon spheres. Phys. Rev. D, 105(12):124064, 2022. doi = 10.1103/PhysRevD.105.124064
- Shadows and gravitational weak lensing by the Schwarzschild black hole in the string cloud background with quintessential field*. Chin. Phys. C, 46(12):125107, 2022. doi = 10.1088/1674-1137/ac917f
- S. Chandrasekhar. The Mathematical Theory of Black Holes. Fundam. Theor. Phys., 9:5–26, 1984. doi = 10.1007/978-94-009-6469-3_2
- Role of the scalar field in gravitational lensing. Astron. Astrophys., 337:1–8, 1998. eprint = astro-ph/980117
- Gravitational lensing by a black hole in effective loop quantum gravity. Phys. Rev. D, 105(6):064020, 2022. doi = 10.1103/PhysRevD.105.064020
- Strong gravitational lensing in hairy Schwarzschild background. Eur. Phys. J. Plus, 138(1):86, 2023. doi = 10.1140/epjp/s13360-023-03650-w
- V. Bozza. A Comparison of approximate gravitational lens equations and a proposal for an improved new one. Phys. Rev. D, 78:103005, 2008. doi = 10.1103/PhysRevD.78.103005
- Albert Einstein. Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field. Science, 84:506–507, 1936. doi = 10.1126/science.84.2188.506
- Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities. Phys. Rev. D, 77:124014, 2008. doi = 10.1103/PhysRevD.77.124014
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019. doi = 10.3847/2041-8213/ab1141
- Zhuo Chen et al. Consistency of the Infrared Variability of SGR A* over 22 yr. Astrophys. J. Lett., 882(2):L28, 2019. doi = 10.3847/2041-8213/ab3c68
- The effects of finite distance on the gravitational deflection angle of light. Universe, 5(11):218, 2019. doi = 10.3390/universe5110218
- Chen-Kai Qiao and Mi Zhou. Gravitational lensing of Schwarzschild and charged black holes immersed in perfect fluid dark matter halo. JCAP, 12:005, 2023. doi = 10.1088/1475-7516/2023/12/005
- Higher order corrections to deflection angle of massive particles and light rays in plasma media for stationary spacetimes using the Gauss-Bonnet theorem. Phys. Rev. D, 100(10):104045, 2019. doi = 10.1103/PhysRevD.100.104045