Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Lensing Effect of Quantum-Corrected Black Hole and Parameter Constraints from EHT Observations (2403.18606v3)

Published 27 Mar 2024 in gr-qc

Abstract: The quantum-corrected black hole model demonstrates significant potential in the study of gravitational lensing effects. By incorporating quantum effects, this model addresses the singularity problem in classical black holes. In this paper, we investigate the impact of the quantum correction parameter on the lensing effect based on the quantum corrected black hole model. Using the black holes $M87*$ and $Sgr A*$ as our subjects, we explore the influence of the quantum correction parameter on angular position, Einstein ring, and time delay. Additionally, we use data from the Event Horizon Telescope observations of black hole shadows to constrain the quantum correction parameter. Our results indicate that the quantum correction parameter significantly affects the lensing coefficients $\bar{a}$ and $\bar{b}$, as well as the Einstein ring. The position $\theta_{\infty}$ and brightness ratio $S$ of the relativistic image exhibit significant changes,with deviations on the order of magnitude of $\sim 1\mu as$ and $\sim 0.01\mu as$, respectively. The impact of the quantum correction parameter on the time delay $\Delta T_{21}$ is particularly significant in the $M87*$ black hole, with deviations reaching up to several tens of hours. Using observational data from the Event Horizon Telescope(EHT) of black hole shadows to constrain the quantum correction parameter, the constraint range under the $M87*$ black hole is $0\le \frac{\alpha}{M2}\le 1.4087$ and the constraint range under the $Sgr A*$ black hole is $0.9713\le \frac{\alpha}{M2}\le 1.6715$ . Although the current resolution of the EHT limits the observation of subtle differences, future high-resolution telescopes are expected to further distinguish between the quantum-corrected black hole and the Schwarzschild black hole, providing new avenues for exploring quantum gravitational effects.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (103)
  1. B. P. Abbott et al. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Phys. Rev. Lett., 116(13):131103, 2016. doi = 10.1103/PhysRevLett.116.131103
  2. Clifford M. Will. The Confrontation between General Relativity and Experiment. Living Rev. Rel., 17:4, 2014. doi = 10.12942/lrr-2014-4
  3. Pedro G. Ferreira. Cosmological Tests of Gravity. Ann. Rev. Astron. Astrophys., 57:335–374, 2019. doi = 10.1146/annurev-astro-091918-104423
  4. Modified Gravity and Cosmology. Phys. Rept., 513:1–189, 2012. doi = 10.1016/j.physrep.2012.01.001
  5. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019. doi = 10.3847/2041-8213/ab0ec7
  6. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022. doi = 10.3847/2041-8213/ac6674
  7. S. W. Hawking and R. Penrose. The Singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond. A, 314:529–548, 1970. doi = 10.1098/rspa.1970.0021
  8. Roger Penrose. Gravitational collapse and space-time singularities. Phys. Rev. Lett., 14:57–59, 1965. doi = 10.1103/PhysRevLett.14.57
  9. Hoop and weak cosmic censorship conjectures for the axisymmetric Einstein-Vlasov system. Phys. Rev. D, 108(6):064054, 2023. doi = 10.1103/PhysRevD.108.064054
  10. Testing The Weak Cosmic Censorship Conjecture in Short Haired Black Holes. 2 2024. eprint = 2402.16373
  11. Exploring the Impact of Coupled Behavior on the Weak Cosmic Censorship Conjecture in Cold Dark Matter-Black Hole Systems. 1 2024. eprint = 2401.11482
  12. The Weak Cosmic Censorship Conjecture in Hairy Kerr Black Holes. 1 2024. eprint = 2401.11379
  13. Test the weak cosmic censorship conjecture via cold dark matter-black hole and ultralight dark matter-black hole. 11 2023. eprint = 2311.04415
  14. Test the weak cosmic supervision conjecture in dark matter-black hole system. Eur. Phys. J. C, 83(10):986, 2023. doi = 10.1140/epjc/s10052-023-12163-w
  15. Strong cosmic censorship in light of weak gravity conjecture for charged black holes. JHEP, 02:236, 2023. doi = 10.1007/JHEP02(2023)236
  16. Destroying the event horizon of a rotating black-bounce black hole. Eur. Phys. J. C, 83(10):938, 2023. doi = 10.1140/epjc/s10052-023-12117-2
  17. Quantum Nature of the Big Bang: Improved dynamics. Phys. Rev. D, 74:084003, 2006. doi = 10.1103/PhysRevD.74.084003
  18. Shadow and stability of quantum-corrected black holes. Eur. Phys. J. C, 83(7):619, 2023. doi = 10.1140/epjc/s10052-023-11800-8
  19. Fundamental structure of loop quantum gravity. Int. J. Mod. Phys. D, 16:1397–1474, 2007. doi = 10.1142/S0218271807010894
  20. Background independent quantum gravity: A Status report. Class. Quant. Grav., 21:R53, 2004. doi = 10.1088/0264-9381/21/15/R01
  21. Alejandro Perez. The Spin Foam Approach to Quantum Gravity. Living Rev. Rel., 16:3, 2013. doi = 10.12942/lrr-2013-3
  22. From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity. PoS, QGQGS2011:002, 2011. doi = 10.22323/1.140.0002
  23. Thomas Thiemann. Lectures on loop quantum gravity. Lect. Notes Phys., 631:41–135, 2003. doi = 10.1007/978-3-540-45230-0_3
  24. Quantum nature of the big bang. Phys. Rev. Lett., 96:141301, 2006. doi = 10.1103/PhysRevLett.96.141301
  25. Quantum Nature of the Big Bang: An Analytical and Numerical Investigation. I. Phys. Rev. D, 73:124038, 2006. doi = 10.1103/PhysRevD.73.124038
  26. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys., 7(2):233–268, 2003. doi = 10.4310/ATMP.2003.v7.n2.a2
  27. Theodoros Papanikolaou. Primordial black holes in loop quantum cosmology: the effect on the threshold. Class. Quant. Grav., 40(13):134001, 2023. doi = 10.1088/1361-6382/acd97d
  28. Genericity of big bounce in isotropic loop quantum cosmology. Phys. Rev. Lett., 94:011302, 2005. doi = 10.1103/PhysRevLett.94.011302
  29. G. V. Vereshchagin. Qualitative approach to semi-classical loop quantum cosmology. JCAP, 07:013, 2004. doi = 10.1088/1475-7516/2004/07/013
  30. Big crunch avoidance in K=1 semiclassical loop quantum cosmology. Phys. Rev. D, 69:104008, 2004. doi = 10.1103/PhysRevD.69.104008”,
  31. Edward Wilson-Ewing. Testing loop quantum cosmology. Comptes Rendus Physique, 18:207–225, 2017. doi = 10.1016/j.crhy.2017.02.004
  32. (b,v)-type variables for black to white hole transitions in effective loop quantum gravity. Phys. Lett. B, 819:136390, 2021. doi = 10.1016/j.physletb.2021.136390
  33. Quantum Transfiguration of Kruskal Black Holes. Phys. Rev. Lett., 121(24):241301, 2018. doi = 10.1103/PhysRevLett.121.241301
  34. Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys. Rev. Lett., 126(18):181301, 2021. doi = 10.1103/PhysRevLett.126.181301
  35. Mass and Horizon Dirac Observables in Effective Models of Quantum Black-to-White Hole Transition. Class. Quant. Grav., 38(9):095002, 2021. doi = 10.1088/1361-6382/abe05d
  36. Quantum Oppenheimer-Snyder and Swiss Cheese Models. Phys. Rev. Lett., 130(10):101501, 2023. doi = 10.1103/PhysRevLett.130.101501
  37. Quasinormal modes of quantum-corrected black holes. 12 2023. eprint = 2312.17639
  38. Shadows and photon rings of a quantum black hole. Phys. Lett. B, 851:138566, 2024. doi = 10.1016/j.physletb.2024.138566
  39. Scalar fields around a loop quantum gravity black hole in de Sitter spacetime: Quasinormal modes, late-time tails and strong cosmic censorship. Phys. Rev. D, 109(6):064012, 2024. doi = 10.1103/PhysRevD.109.064012
  40. Xiangdong Zhang. Loop Quantum Black Hole. Universe, 9(7):313, 2023. doi = 10.3390/universe9070313
  41. Spherical symmetric gravitational collapse of a dust cloud: Polymerized dynamics in reduced phase space. Phys. Rev. D, 107(4):044047, 2023. doi = 10.1103/PhysRevD.107.044047
  42. Sjur Refsdal and H. Bondi. The Gravitational Lens Effect. Monthly Notices of the Royal Astronomical Society, 128(4):295–306, 09 1964. doi = 10.1093/mnras/128.4.295
  43. Sidney Liebes. Gravitational Lenses. Phys. Rev., 133:B835–B844, 1964. doi = 10.1103/PhysRev.133.B835
  44. V. Bozza. Gravitational lensing in the strong field limit. Phys. Rev. D, 66:103001, 2002. doi = 10.1103/PhysRevD.66.103001
  45. K. S. Virbhadra and George F. R. Ellis. Schwarzschild black hole lensing. Phys. Rev. D, 62:084003, 2000. doi = 10.1103/PhysRevD.62.084003
  46. Strong field limit of black hole gravitational lensing. Gen. Rel. Grav., 33:1535–1548, 2001. doi = 10.1023/A:1012292927358
  47. Naoki Tsukamoto. Deflection angle in the strong deflection limit in a general asymptotically flat, static, spherically symmetric spacetime. Phys. Rev. D, 95(6):064035, 2017. doi = 10.1103/PhysRevD.95.064035
  48. Deflection and gravitational lensing with finite distance effect in the strong deflection limit in stationary and axisymmetric spacetimes. JCAP, 07:036, 2023. doi = 10.1088/1475-7516/2023/07/036
  49. Strong gravitational lensing by loop quantum gravity motivated rotating black holes and EHT observations. Eur. Phys. J. C, 83(11):1014, 2023. doi = 10.1140/epjc/s10052-023-12205-3
  50. Analytical study of gravitational lensing in Kerr-Newman black-bounce spacetime. JCAP, 11:006, 2022. doi = 10.1088/1475-7516/2022/11/006
  51. Gravitational time delay effects by Kerr and Kerr-Newman black holes in strong field limits. Phys. Rev. D, 104(10):104013, 2021. doi = 10.1103/PhysRevD.104.104013
  52. Strong field gravitational lensing by hairy Kerr black holes. Phys. Rev. D, 103(12):124052, 2021. doi = 10.1103/PhysRevD.103.124052
  53. Strong gravitational lensing by Kerr and Kerr-Newman black holes. Phys. Rev. D, 103(10):104063, 2021. doi = 10.1103/PhysRevD.103.104063
  54. Strong gravitational lensing in a squashed Kaluza-Klein Gödel black hole. Phys. Rev. D, 83:124019, 2011. doi = 10.1103/PhysRevD.83.124019
  55. Strong field limit analysis of gravitational retro lensing. Phys. Rev. D, 69:063004, 2004. doi = 10.1103/PhysRevD.69.063004
  56. Richard Whisker. Strong gravitational lensing by braneworld black holes. Phys. Rev. D, 71:064004, 2005. doi = 10.1103/PhysRevD.71.064004
  57. Ernesto F. Eiroa. Braneworld black holes as gravitational lenses. Braz. J. Phys., 35:1113–1116, 2005. doi = 10.1590/S0103-97332005000700026
  58. Strong Gravitational Lensing in a Brane-World Black Hole. Int. J. Theor. Phys., 54(9):3103–3114, 2015. [Erratum: Int.J.Theor.Phys. 54, 3864–3865 (2015)]. doi = 10.1007/s10773-015-2545-y
  59. Gravitational lensing by black holes in the 4⁢D4𝐷4D4 italic_D Einstein-Gauss-Bonnet gravity. JCAP, 09:030, 2020. doi = 10.1088/1475-7516/2020/09/030
  60. V. Bozza and L. Mancini. Time delay in black hole gravitational lensing as a distance estimator. Gen. Rel. Grav., 36:435–450, 2004. doi = 10.1023/B:GERG.0000010486.58026.4f
  61. Shadow cast and deflection of light by charged rotating regular black holes. Phys. Rev. D, 100(12):124024, 2019. doi = 10.1103/PhysRevD.100.124024
  62. Investigating strong gravitational lensing effects by supermassive black holes with Horndeski gravity. Eur. Phys. J. C, 82(5):443, 2022. doi = 10.1140/epjc/s10052-022-10357-2
  63. Gravitational lensing effects of black hole with conformally coupled scalar hair. Eur. Phys. J. C, 83(11):1043, 2023. doi = 10.1140/epjc/s10052-023-12233-z
  64. Particle motions and Gravitational Lensing in de Rham-Gabadadze-Tolley Massive Gravity Theory. Phys. Rev. D, 100(4):044031, 2019. doi = 10.1103/PhysRevD.100.044031
  65. Particle acceleration around rotating Einstein-Born-Infeld black hole and plasma effect on gravitational lensing. Phys. Rev. D, 103(8):084057, 2021. doi = 10.1103/PhysRevD.103.084057
  66. Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole. Annals Phys., 447:169147, 2022. doi = 10.1016/j.aop.2022.169147
  67. Observational Probes of Cosmic Acceleration. Phys. Rept., 530:87–255, 2013. doi = 10.1016/j.physrep.2013.05.001
  68. Weak gravitational lensing of the CMB. Phys. Rept., 429:1–65, 2006. doi = 10.1016/j.physrep.2006.03.002
  69. Constraining dark matter decay with cosmic microwave background and weak-lensing shear observations. Astron. Astrophys., 672:A157, 2023. doi = 10.1051/0004-6361/202245562
  70. The dark matter of gravitational lensing. Rept. Prog. Phys., 73:086901, 2010. doi = 10.1088/0034-4885/73/8/086901
  71. Mauro Sereno. Weak field limit of Reissner-Nordstrom black hole lensing. Phys. Rev. D, 69:023002, 2004. doi = 10.1103/PhysRevD.69.023002
  72. Formalism for testing theories of gravity using lensing by compact objects. I. Static, spherically symmetric case. Phys. Rev. D, 72:104006, 2005. doi = 10.1103/PhysRevD.72.104006
  73. Magnification relations for Kerr lensing and testing Cosmic Censorship. Phys. Rev. D, 76:064024, 2007. doi = 10.1103/PhysRevD.76.064024
  74. Analytical Kerr black hole lensing in the weak deflection limit. Phys. Rev. D, 74:123009, 2006. doi = 10.1103/PhysRevD.74.123009
  75. Applications of the Gauss-Bonnet theorem to gravitational lensing. Class. Quant. Grav., 25:235009, 2008. doi = 10.1088/0264-9381/25/23/235009
  76. M. C. Werner. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Rel. Grav., 44:3047–3057, 2012. doi = 10.1007/s10714-012-1458-9
  77. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D, 94(8):084015, 2016. doi = 10.1103/PhysRevD.94.084015
  78. Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D, 95(4):044017, 2017. doi = 10.1103/PhysRevD.95.044017
  79. Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes. Phys. Rev. D, 96(10):104037, 2017. doi = 10.1103/PhysRevD.96.104037
  80. Light Deflection by a Rotating Global Monopole Spacetime. Phys. Rev. D, 95(10):104012, 2017. doi = 10.1103/PhysRevD.95.104012
  81. Effect of Lorentz Symmetry Breaking on the Deflection of Light in a Cosmic String Spacetime. Phys. Rev. D, 96(2):024040, 2017. doi = 10.1103/PhysRevD.96.024040
  82. Gravitational Lensing by Rotating Wormholes. Phys. Rev. D, 97(2):024042, 2018. doi = 10.1103/PhysRevD.97.024042
  83. Weak deflection angle by electrically and magnetically charged black holes from nonlinear electrodynamics. Phys. Rev. D, 104(2):024033, 2021. doi = 10.1103/PhysRevD.104.024033
  84. Exact traversable wormhole solution in bumblebee gravity. Phys. Rev. D, 99(2):024042, 2019. doi = 10.1103/PhysRevD.99.024042
  85. Weak gravitational lensing in dark matter and plasma mediums for wormhole-like static aether solution. Eur. Phys. J. C, 82(11):1057, 2022. doi = 10.1140/epjc/s10052-022-11030-4
  86. Gravitational lensing by a charged spherically symmetric black hole immersed in thin dark matter. Eur. Phys. J. C, 83(4):281, 2023. doi = 10.1140/epjc/s10052-023-11414-0
  87. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019. doi = 10.3847/2041-8213/ab0c96
  88. Circular motion of neutral test particles in Reissner-Nordström spacetime. Phys. Rev. D, 83:024021, 2011. doi = 10.1103/PhysRevD.83.024021
  89. Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 104(2):024003, 2021. doi = 10.1103/PhysRevD.104.024003
  90. Gravitational lensing by black holes with multiple photon spheres. Phys. Rev. D, 105(12):124064, 2022. doi = 10.1103/PhysRevD.105.124064
  91. Shadows and gravitational weak lensing by the Schwarzschild black hole in the string cloud background with quintessential field*. Chin. Phys. C, 46(12):125107, 2022. doi = 10.1088/1674-1137/ac917f
  92. S. Chandrasekhar. The Mathematical Theory of Black Holes. Fundam. Theor. Phys., 9:5–26, 1984. doi = 10.1007/978-94-009-6469-3_2
  93. Role of the scalar field in gravitational lensing. Astron. Astrophys., 337:1–8, 1998. eprint = astro-ph/980117
  94. Gravitational lensing by a black hole in effective loop quantum gravity. Phys. Rev. D, 105(6):064020, 2022. doi = 10.1103/PhysRevD.105.064020
  95. Strong gravitational lensing in hairy Schwarzschild background. Eur. Phys. J. Plus, 138(1):86, 2023. doi = 10.1140/epjp/s13360-023-03650-w
  96. V. Bozza. A Comparison of approximate gravitational lens equations and a proposal for an improved new one. Phys. Rev. D, 78:103005, 2008. doi = 10.1103/PhysRevD.78.103005
  97. Albert Einstein. Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field. Science, 84:506–507, 1936. doi = 10.1126/science.84.2188.506
  98. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities. Phys. Rev. D, 77:124014, 2008. doi = 10.1103/PhysRevD.77.124014
  99. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019. doi = 10.3847/2041-8213/ab1141
  100. Zhuo Chen et al. Consistency of the Infrared Variability of SGR A* over 22 yr. Astrophys. J. Lett., 882(2):L28, 2019. doi = 10.3847/2041-8213/ab3c68
  101. The effects of finite distance on the gravitational deflection angle of light. Universe, 5(11):218, 2019. doi = 10.3390/universe5110218
  102. Chen-Kai Qiao and Mi Zhou. Gravitational lensing of Schwarzschild and charged black holes immersed in perfect fluid dark matter halo. JCAP, 12:005, 2023. doi = 10.1088/1475-7516/2023/12/005
  103. Higher order corrections to deflection angle of massive particles and light rays in plasma media for stationary spacetimes using the Gauss-Bonnet theorem. Phys. Rev. D, 100(10):104045, 2019. doi = 10.1103/PhysRevD.100.104045
Citations (5)

Summary

We haven't generated a summary for this paper yet.