Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct mineral content prediction from drill core images via transfer learning (2403.18495v1)

Published 27 Mar 2024 in cs.CV, cs.LG, and eess.IV

Abstract: Deep subsurface exploration is important for mining, oil and gas industries, as well as in the assessment of geological units for the disposal of chemical or nuclear waste, or the viability of geothermal energy systems. Typically, detailed examinations of subsurface formations or units are performed on cuttings or core materials extracted during drilling campaigns, as well as on geophysical borehole data, which provide detailed information about the petrophysical properties of the rocks. Depending on the volume of rock samples and the analytical program, the laboratory analysis and diagnostics can be very time-consuming. This study investigates the potential of utilizing machine learning, specifically convolutional neural networks (CNN), to assess the lithology and mineral content solely from analysis of drill core images, aiming to support and expedite the subsurface geological exploration. The paper outlines a comprehensive methodology, encompassing data preprocessing, machine learning methods, and transfer learning techniques. The outcome reveals a remarkable 96.7% accuracy in the classification of drill core segments into distinct formation classes. Furthermore, a CNN model was trained for the evaluation of mineral content using a learning data set from multidimensional log analysis data (silicate, total clay, carbonate). When benchmarked against laboratory XRD measurements on samples from the cores, both the advanced multidimensional log analysis model and the neural network approach developed here provide equally good performance. This work demonstrates that deep learning and particularly transfer learning can support extracting petrophysical properties, including mineral content and formation classification, from drill core images, thus offering a road map for enhancing model performance and data set quality in image-based analysis of drill cores.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Jung, D., Choi, Y.: Systematic Review of Machine Learning Applications in Mining: Exploration, Exploitation, and Reclamation. Minerals 11(2), 148 (2021) https://doi.org/10.3390/min11020148 . Accessed 2023-06-28 Woodhead and Landry [2021] Woodhead, J., Landry, M.: Harnessing the Power of Artificial Intelligence and Machine Learning in Mineral Exploration—Opportunities and Cautionary Notes. SEG Discovery 127, 19–31 (2021) https://doi.org/10.5382/Geo-and-Mining-13 . Accessed 2023-06-28 Alguliyev et al. [2023] Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Automatic facies detection based on oilfield core images. Petroleum Science and Technology 41(17), 1641–1664 (2023) https://doi.org/10.1080/10916466.2022.2094954 . Accessed 2023-06-28 Alzubaidi et al. [2021] Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Woodhead, J., Landry, M.: Harnessing the Power of Artificial Intelligence and Machine Learning in Mineral Exploration—Opportunities and Cautionary Notes. SEG Discovery 127, 19–31 (2021) https://doi.org/10.5382/Geo-and-Mining-13 . Accessed 2023-06-28 Alguliyev et al. [2023] Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Automatic facies detection based on oilfield core images. Petroleum Science and Technology 41(17), 1641–1664 (2023) https://doi.org/10.1080/10916466.2022.2094954 . Accessed 2023-06-28 Alzubaidi et al. [2021] Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Automatic facies detection based on oilfield core images. Petroleum Science and Technology 41(17), 1641–1664 (2023) https://doi.org/10.1080/10916466.2022.2094954 . Accessed 2023-06-28 Alzubaidi et al. [2021] Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  2. Woodhead, J., Landry, M.: Harnessing the Power of Artificial Intelligence and Machine Learning in Mineral Exploration—Opportunities and Cautionary Notes. SEG Discovery 127, 19–31 (2021) https://doi.org/10.5382/Geo-and-Mining-13 . Accessed 2023-06-28 Alguliyev et al. [2023] Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Automatic facies detection based on oilfield core images. Petroleum Science and Technology 41(17), 1641–1664 (2023) https://doi.org/10.1080/10916466.2022.2094954 . Accessed 2023-06-28 Alzubaidi et al. [2021] Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Automatic facies detection based on oilfield core images. Petroleum Science and Technology 41(17), 1641–1664 (2023) https://doi.org/10.1080/10916466.2022.2094954 . Accessed 2023-06-28 Alzubaidi et al. [2021] Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  3. Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Automatic facies detection based on oilfield core images. Petroleum Science and Technology 41(17), 1641–1664 (2023) https://doi.org/10.1080/10916466.2022.2094954 . Accessed 2023-06-28 Alzubaidi et al. [2021] Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  4. Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R., Armstrong, R.T.: Automated lithology classification from drill core images using convolutional neural networks. Journal of Petroleum Science and Engineering 197, 107933 (2021) https://doi.org/10.1016/j.petrol.2020.107933 Falivene et al. [2022] Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  5. Falivene, O., Auchter, N.C., Lima, R., Kleipool, L., Solum, J.G., Zarian, P., Clark, R.W., Espejo, I.: Lithofacies identification in cores using deep learning segmentation and the role of geoscientists: Turbidite deposits (Gulf of Mexico and North Sea). AAPG Bulletin 106(7), 1357–1372 (2022) https://doi.org/10.1306/03112221015 . Accessed 2023-06-28 Fu et al. [2022] Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  6. Fu, D., Su, C., Wang, W., Yuan, R.: Deep learning based lithology classification of drill core images. PLOS ONE 17(7), 1–25 (2022) https://doi.org/10.1371/journal.pone.0270826 Lauper et al. [2021] Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  7. Lauper, B., Zimmerli, G.N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., Foubert, A.: Quantification of lithological heterogeneity within opalinus clay: Toward a uniform subfacies classification scheme using a novel automated core image recognition tool. Frontiers in Earth Science 9 (2021) https://doi.org/10.3389/feart.2021.645596 Park and Jeong [2023] Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  8. Park, J., Jeong, J.: Assessment of the effectiveness of a convolutional autoencoder for digital image-based automated core logging. Geoenergy Science and Engineering 227, 211802 (2023) https://doi.org/10.1016/j.geoen.2023.211802 . Accessed 2023-06-28 Solum et al. [2022] Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  9. Solum, J.G., Auchter, N.C., Falivene, O., Cilona, A., Kleipool, L., Zarian, P.: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets. Interpretation 10(3), 71–83 (2022) https://doi.org/10.1190/INT-2021-0189.1 . Accessed 2023-06-28 Koeshidayatullah et al. [2022] Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  10. Koeshidayatullah, A., Al-Azani, S., Baraboshkin, E.E., Alfarraj, M.: FaciesViT: Vision transformer for an improved core lithofacies prediction. Frontiers in Earth Science 10, 992442 (2022) https://doi.org/10.3389/feart.2022.992442 . Accessed 2023-06-28 Baraboshkin et al. [2022] Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  11. Baraboshkin, E.E., Demidov, A.E., Orlov, D.M., Koroteev, D.A.: Core box image recognition and its improvement with a new augmentation technique. Computers & Geosciences 162, 105099 (2022) https://doi.org/10.1016/j.cageo.2022.105099 Gunther et al. [2021] Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  12. Gunther, C., Jansson, N., Liwicki, M., Simistira-Liwicki, F.: Towards a Machine Learning Framework for Drill Core Analysis. In: 2021 Swedish Artificial Intelligence Society Workshop (SAIS), pp. 1–6. IEEE, Sweden (2021). https://doi.org/10.1109/SAIS53221.2021.9484025 . https://ieeexplore.ieee.org/document/9484025/ Accessed 2023-06-28 Alzubaidi et al. [2022] Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  13. Alzubaidi, F., Mostaghimi, P., Si, G., Swietojanski, P., Armstrong, R.T.: Automated Rock Quality Designation Using Convolutional Neural Networks. Rock Mechanics and Rock Engineering 55(6), 3719–3734 (2022) https://doi.org/10.1007/s00603-022-02805-y . Accessed 2023-06-28 Li et al. [2023] Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  14. Li, J.X., Tsang, M., Zhong, R., Esterle, J., Pirona, C., Rajabi, M., Chen, Z.: Automatic coal mine roof rating calculation using machine learning. International Journal of Coal Geology 274, 104292 (2023) https://doi.org/10.1016/j.coal.2023.104292 . Accessed 2023-06-28 Faria et al. [2022] Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  15. Faria, E.L., Coelho, J.M., Matos, T.F., Santos, B.C.C., Trevizan, W.A., Gonzalez, J.L., Bom, C.R., Albuquerque, M.P., Albuquerque, M.P.: Lithology identification in carbonate thin section images of the Brazilian pre-salt reservoirs by the computational vision and deep learning. Computational Geosciences 26(6), 1537–1547 (2022) https://doi.org/10.1007/s10596-022-10168-0 . Accessed 2023-06-28 Zhou et al. [2023] Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  16. Zhou, Z., Yuan, H., Cai, X.: Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods. Mathematics 11(5), 1245 (2023) https://doi.org/10.3390/math11051245 . Accessed 2023-06-28 Shi et al. [2023] Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  17. Shi, H., Ma, W., Xu, Z., Lin, P.: A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Systems with Applications 231, 120657 (2023) https://doi.org/10.1016/j.eswa.2023.120657 . Accessed 2023-06-28 Xu et al. [2022] Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  18. Xu, P., Gan, C., Wang, L., Cao, W.: A Multi-feature Extraction-based Image Identification Method for Rock Debris in The Drilling Process. In: 2022 China Automation Congress (CAC), pp. 6666–6671. IEEE, Xiamen, China (2022). https://doi.org/10.1109/CAC57257.2022.10054959 . https://ieeexplore.ieee.org/document/10054959/ Accessed 2023-06-28 Xu et al. [2021] Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  19. Xu, Z., Shi, H., Lin, P., Liu, T.: Integrated lithology identification based on images and elemental data from rocks. Journal of Petroleum Science and Engineering 205, 108853 (2021) https://doi.org/10.1016/j.petrol.2021.108853 . Accessed 2023-06-28 Xu et al. [2022] Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  20. Xu, Z., Shi, H., Lin, P., Ma, W.: Intelligent On-Site Lithology Identification Based on Deep Learning of Rock Images and Elemental Data. IEEE Geoscience and Remote Sensing Letters 19, 1–5 (2022) https://doi.org/10.1109/LGRS.2022.3179623 . Accessed 2023-06-28 Houshmand et al. [2022] Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  21. Houshmand, N., GoodFellow, S., Esmaeili, K., Ordóñez Calderón, J.C.: Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Applied Computing and Geosciences 16, 100104 (2022) https://doi.org/10.1016/j.acags.2022.100104 . Accessed 2023-06-28 Trott et al. [2022] Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  22. Trott, M., Leybourne, M., Hall, L., Layton-Matthews, D.: Random forest rock type classification with integration of geochemical and photographic data. Applied Computing and Geosciences 15, 100090 (2022) https://doi.org/10.1016/j.acags.2022.100090 . Accessed 2023-06-28 Tuşa et al. [2020] Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  23. Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sensing 12(7), 1218 (2020) https://doi.org/10.3390/rs12071218 . Accessed 2023-06-28 Barker et al. [2021] Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  24. Barker, R.D., Barker, S.L.L., Cracknell, M.J., Stock, E.D., Holmes, G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using μ𝜇\muitalic_μXRF and Machine Learning. Economic Geology 116(4), 821–836 (2021) https://doi.org/10.5382/econgeo.4804 https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/116/4/821/5297156/4804_barker_et_al.pdf Guerra Prado et al. [2023] Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  25. Guerra Prado, E.M., Souza Filho, C.R., Muico Carranza, E.J.: Ore-Grade Estimation from Hyperspectral Data Using Convolutional Neural Networks: A Case Study at the Olympic Dam Iron Oxide Copper-Gold Deposit, Australia. Economic Geology (2023) https://doi.org/10.5382/econgeo.5023 . Accessed 2023-08-22 Krupnik and Khan [2020] Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  26. Krupnik, D., Khan, S.D.: High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 10(11), 967 (2020) https://doi.org/10.3390/min10110967 . Accessed 2023-06-28 Kupssinskü et al. [2022] Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  27. Kupssinskü, L.S., Guimarães, T.T., Cardoso, M.d.B., Bachi, L., Zanotta, D., Souza, I., Falcão, A.X., Velloso, R.Q., Cazarin, C.L., Veronez, M.R., Gonzaga, L.: Hyperspectral data as a proxy for porosity estimation of carbonate rocks. Australian Journal of Earth Sciences 69(6), 861–875 (2022) https://doi.org/10.1080/08120099.2022.2046636 . Accessed 2023-07-23 Lorenz et al. [2019] Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  28. Lorenz, S., Seidel, P., Ghamisi, P., Zimmermann, R., Tusa, L., Khodadadzadeh, M., Contreras Acosta, I.C., Gloaguen, R.: Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 19(12) (2019) https://doi.org/10.3390/s19122787 Mishra et al. [2022] Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  29. Mishra, A., Jyoti, A., Haese, R.R.: Irida: A machine learning based code for the automated derivation of site-specific rock type logs and their properties using Kimeleon colourlith image logs. Applied Computing and Geosciences 16, 100102 (2022) https://doi.org/10.1016/j.acags.2022.100102 . Accessed 2023-06-28 [31] Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  30. Nagra, Swiss National Cooperative for the Disposal of Radioactive Waste. https://nagra.ch/ [32] Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  31. Radioactive Waste, N.-S.N.C.: Trüllikon-1. https://nagra.ch/wissensforum/tiefbohrung-truellikon-1/. Accessed: 2023-08-28 [33] Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  32. Nagra Arbeitsbericht NAB 20-09, TBO Trüllikon-1-1: Data Report, Wettingen, Switzerland (2021). https://nagra.ch/en/downloads/arbeitsbericht-nab-20-09-2/ Ammen, M. and Palten, P.-J. [2021] Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  33. Ammen, M. and Palten, P.-J.: TBO Trüllikon-1-1: Data Report, Dossier I, Drilling, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-I.pdf Kaehr, D. and Gysi, M. [2021] Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  34. Kaehr, D. and Gysi, M.: TBO Trüllikon-1-1: Data Report, Dossier II, Core Photography, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/07/e_nab20-00920Dossier20II.pdf Marnat, S. and Becker, J.K. [2021] Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  35. Marnat, S. and Becker, J.K.: TBO Trüllikon-1-1: Data Report, Dossier X, Petrophysical Log Analysis, Wettingen, Switzerland (2021). https://nagra.ch/wp-content/uploads/2022/08/e_nab20-009-Dossier-X.pdf Marnat and Becker [2020] Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  36. Marnat, S., Becker, J.K.: Petrophysical Log Analysis of Deep and Shallow Boreholes: Methodology Report, Wettingen, Switzerland (2020). https://nagra.ch/downloads/arbeitsbericht-nab-20-30/ Clark [2015] Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  37. Clark, A.: Pillow (PIL Fork) Documentation. readthedocs (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  38. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python (2011). https://dl.acm.org/doi/10.5555/1953048.2078195 Otsu [1979] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  39. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979) https://doi.org/10.1109/TSMC.1979.4310076 Geron [2019] Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  40. Geron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., ??? (2019). https://raw.githubusercontent.com/data-science-projects-and-resources/Data-Science-EBooks/main/Machine%20Learning/Hands-on-Machine-Learning.pdf He et al. [2016] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  41. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  42. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Citations (3)

Summary

We haven't generated a summary for this paper yet.