Sensing with submarine optical cables (2403.18448v5)
Abstract: In this paper, we establish the theoretical framework for understanding the sensing capabilities of optical fibers. We show the distinct advantage of polarization over phase in detecting subhertz environmental processes. Subsequently, we propose a scheme capable of extracting the spectrum of perturbations affecting a specific section at any position along an optical fiber by detecting the state of polarization of the backreflected light. We discuss two examples of earthquake detection and the detection of sea swells and ocean tides through the analysis of the state of polarization of an optical signal reconstructed by the receiver of a transoceanic cable, obtained from an online database.\cite{zhongwenzhan_2020} Finally, we provide the analytical expression for the cross-correlation of the polarization perturbations of two wavelength division multiplexed channels, and show that the analysis of the polarization correlations between adjacent channels can provide valuable insights into the localization of earthquakes.
- G. Marra, C. Clivati, R. Luckett, A. Tampellini, J. Kronjäger, L. Wright, A. Mura, F. Levi, S. Robinson, A. Xuereb, B. Baptie, and D. Calonico, “Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables,” Science 361, 486–490 (2018), https://www.science.org/doi/pdf/10.1126/science.aat4458 .
- Z. Zhan, M. Cantono, V. Kamalov, A. Mecozzi, R. Müller, S. Yin, and J. C. Castellanos, “Optical polarization–based seismic and water wave sensing on transoceanic cables,” Science 371, 931–936 (2021), https://www.science.org/doi/pdf/10.1126/science.abe6648 .
- A. Mecozzi, M. Cantono, J. C. Castellanos, V. Kamalov, R. Muller, and Z. Zhan, “Polarization sensing using submarine optical cables,” Optica 8, 788–795 (2021), https://opg.optica.org/optica/abstract.cfm?URI=optica-8-6-788 .
- N. J. Lindsey, T. C. Dawe, and J. B. Ajo-Franklin, “Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing,” Science 366, 1103–1107 (2019), https://www.science.org/doi/pdf/10.1126/science.aay5881 .
- M. Landrø, L. Bouffaut, H. J. Kriesell, J. R. Potter, R. A. Rørstadbotnen, K. Taweesintananon, S. E. Johansen, J. K. Brenne, A. Haukanes, O. Schjelderup, and F. Storvik, “Sensing whales, storms, ships and earthquakes using an arctic fibre optic cable,” Scientific Reports 12, 19226 (2022), https://doi.org/10.1038/s41598-022-23606-x .
- K. S. Y. Skarvang, S. Bjørnstad, R. A. Rørstadbotnen, K. Bozorgebrahimi, and D. R. Hjelme, “Observation of local small magnitude earthquakes using state of polarization monitoring in a 250km passive arctic submarine communication cable,” in Optical Fiber Communication Conference (OFC) 2023 (Optica Publishing Group, 2023) p. W1J.2.
- This property is an immediate consequence of the isomorphism between SU(2)SU2\mathrm{SU}(2)roman_SU ( 2 ) and SO(3)SO3\mathrm{SO}(3)roman_SO ( 3 ) (the group of three dimensional rotations around the origin of Stokes space) and of the fact that the concatenation of rotations is still a rotation.
- J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proceedings of the National Academy of Sciences 97, 4541–4550 (2000), https://www.pnas.org/content/97/9/4541.full.pdf .
- J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge University Press, 2017).
- J. P. Gordon, “Statistical properties of polarization mode dispersion,” in Polarization Mode Dispersion (Springer New York, New York, NY, 2005) pp. 52–59.
- A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurement of birefringence correlation length in long, single-mode fibers,” Opt. Lett. 26, 962–964 (2001).
- J. Wuttke, P. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technology Letters 15, 882–884 (2003).
- M. Shtaif and A. Mecozzi, “Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion,” Opt. Lett. 25, 707–709 (2000).
- S. Donadello, C. Clivati, A. Govoni, L. Margheriti, M. Vassallo, D. Brenda, M. Hovsepyan, E. K. Bertacco, R. Concas, F. Levi, A. Mura, A. Herrero, F. Carpentieri, and D. Calonico, “Seismic monitoring using the telecom fiber network,” Communications Earth & Environment 5, 178 (2024).
- A. Mecozzi, C. Antonelli, M. Mazur, N. Fontaine, H. Chen, L. Dallachiesa, and R. Ryf, “Use of optical coherent detection for environmental sensing,” J. Lightwave Technol. 41, 3350–3357 (2023).
- M. Mazur, J. C. Castellanos, R. Ryf, E. Börjeson, T. Chodkiewicz, V. Kamalov, S. Yin, N. K. Fontaine, H. Chen, L. Dallachiesa, S. Corteselli, P. Copping, J. Gripp, A. Mortelette, B. Kowalski, R. Dellinger, D. T. Neilson, and P. Larsson-Edefors, “Transoceanic phase and polarization fiber sensing using real-time coherent transceiver,” in Optical Fiber Communication Conference (OFC) 2022 (Optica Publishing Group, 2022) p. M2F.2, https://opg.optica.org/abstract.cfm?URI=OFC-2022-M2F.2 .
- M. Mazur, N. K. Fontaine, M. Kelleher, V. Kamalov, R. Ryf, L. Dallachiesa, H. Chen, D. T. Neilson, and F. Quinlan, “Advanced distributed submarine cable monitoring and environmental sensing using constant power probe signals and coherent detection,” (2023), arXiv:2303.06528 [eess.SP] .
- F. Yaman, Y. Li, S. Han, T. Inoue, E. Mateo, and Y. Inada, “Polarization sensing using polarization rotation matrix eigenvalue method,” in Optical Fiber Communication Conference (OFC) 2023 (Optica Publishing Group, 2023) p. W1J.7.
- L. Costa, S. Varughese, P. Mertz, V. Kamalov, and Z. Zhan, “Localization of seismic waves with submarine fiber optics using polarization-only measurements,” Communications Engineering 2, 86 (2023).
- A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Reflectometric characterization of hinges in optical fiber links,” IEEE Photonics Technology Letters 20, 854–856 (2008).